MACHINE TOOL SPINDLE BEARING SELECTION & MOUNTING GUIDE
Contents

Introduction

Bearing Selection
- Overview
- Identification Marks
- Contact Angle
- Universal Sets
- Precision Grades
- Preload
- Bearing Matching

Pre-Mounting
- Cleanliness
- Washing
- Greasing Procedure
- Grease Quantities
- Component Checks

Mounting
- Fitting Bearings to Shaft
- Locknut Torques
- Spindle Runout Checks
- Fitting Spindle to Housing
- Mounting Tapered Bore Roller Bearings
 - Calculation Method
 - Gauge Method
- Summary of Spindle Arrangements
 - Heavy Duty Spindle
 - Medium to High-Speed Spindle

Post-Mounting
- Preload Checks
- Alignment and Balance
- Running In
- Trouble Shooting
 - Cause of High Temperature
 - Cause of Noise

Upgrading
- Robust Design
- Improved Steel
- Sealed Bearings
- Hybrid Bearings
- TYN Cages
- TAC Thrust Bearing Conversions
- TB Cages

Supplementary Information
- Bearing Interchange Guide
- Bearing Failure Countermeasures
- Sound and Vibration Diagnosis
- Appendix of Preload Tables
- Bearing Preload Conversion Tables
- Bore and OD Matching Chart

Useful Tips

Index
The NSK brand, recognised around the world

From home appliances, automobiles, and capital equipment to the aerospace industry – NSK bearings are used in an extensive range of applications. NSK established its global-scale enterprise on technology that has met the exact requirements of global industry.

We have also established R&D systems and support services to meet the diverse needs of our customers in every continent. As a brand recognised around the world NSK continues to lead industry with its technical prowess.

NSK is on the move, across the globe

HEADQUARTERS
- America (North and South)
 - Ann Arbor
 - Shanghai
 - Singapore

- Asia
 - Tokyo
 - Shanghai
 - Singapore

- Europe
 - Maidenhead
 - Ann Arbor

- Japan
 - Tokyo
 - Shanghai

TECHNICAL OFFICES
- America (North and South)
 - Ann Arbor

- Asia
 - Kunshan
 - Shanghai

- Europe
 - Maidenhead
 - Shanghai

PLANTS
- America (North)
 - Ann Arbor
 - Clarinda
 - Franklin
 - Bennington
 - America (South)
 - Suzano
 - Kunshan

- Asia
 - Anshun
 - Dongguan
 - Zhangjiagang
 - Suzhou
 - Changshi
 - Chenzhou
 - Chongbun
 - ChachongSan

- Europe
 - Peterlee
 - Newark
 - Munderkinnig
 - Torino
 - Japan
 - Fujisawa
 - Hanyu
 - Otou
 - Korsan
 - Hanua
 - Meabashi
 - Tanakura
 - Ushita

SALES OFFICES
- Africa
 - Johannesburg

- America (North)
 - Ann Arbor
 - Indianapolis
 - Chicago
 - San Jose
 - Los Angeles
 - Bennington
 - Miami
 - Atlanta
 - Montreal
 - Toronto

- America (South)
 - Buenos Aires
 - Sao Paulo
 - Bako Horizonte
 - Joinville
 - Porto Alegre
 - Recife
 - Mexico City

- Asia
 - Beijing
 - Shenzhen
 - Guangzhou
 - Anshun
 - Chengdu
 - Hong Kong
 - Taipei
 - Taichung
 - Tainan
 - Seoul
 - Chennai
 - Manila
 - Bangkok
 - Kuala Lumpur
 - Prat
 - Johor Bahru
 - Kota Kinabalu
 - Singapore

- Europe
 - Maidenhead
 - Newark
 - Coventry

- Europe
 - Paris
 - Dusseldorf
 - Stuttgart
 - Leipzig

- Japan
 - Tokyo
 - Osaka
 - Nagoya

- Oceania
 - Melbourne
 - Sydney
 - Brisbane
 - Adelaide
 - Perth
 - Auckland

27 other offices
Machine Tool Precision bearings are very accurately engineered components and as such are very important to the successful performance of the machine tool. The way in which a bearing is handled and fitted to a machine tool does not only determine if the machine operates accurately but can also affect the life of the bearing in the spindle. This catalogue is intended to be a comprehensive guide to anyone who fits bearings to a machine tool regardless to whether it is in planned maintenance or reactive to a breakdown.

This catalogue follows a logical progression through selection of the correct bearing types, to the importance of cleanliness before attempting to assemble the spindle. A detailed part of assembly procedures is included with many photographs and drawings. Pre-test checks, ‘running in’ and trouble shooting is also included to allow the builder more scope in solving spindle problems. A further section called Upgrading is included to explain how to improve both the performance and most of all the reliability of a spindle. In nearly all cases this can be simply done by replacing the bearing and no changes being necessary to the actual spindle design.

The successful build of a spindle will depend on close attention to details as illustrated below:

Some sections include a useful tip like the one shown below, these tips are based on many years of experience and can be particularly useful for newcomers to the spindle repair business and a good reminder to the more experienced engineers.

1. Useful Tip

If it is not possible to measure the shaft and housing runouts it is advisable to position the bearing high points out of line so as to avoid accidentally aligning the bearing high points with the shaft high points thereby increasing overall runout.
Bearing Selection

- Bearing Selection Overview 6-7
- NSK Super Precision Range 8
- Identification Markings 9-10
- Contact Angle 11
- Universal Sets 12
- Precision Grades 13
- Preload - Angular Contact 14-16
- Preload - Cylindrical 17
- Bearing Matching 18
Bearing Selection Overview

Conventional Type 72, 70, 79 Series

- **Precision Class:**
 - P4: ISO Class 4 (ABEC7)
 - P3: ISO Class 4 (ABEC9)
 - P2: ISO Class 2 (ABEC9)

- **Preload:**
 - L: Light
 - M: Medium
 - H: Heavy
 - Gxx: Preload in Kgf (G5=5 Kgf)
 - CPxx: Median Preload in Microns (CP10=10μm)
 - CAxx: Median Axial Clearance in Microns (CA15=15μm)

- **Mounting Configuration:**
 - SU: Single Universal
 - DU: Duplex Universal
 - DB, DF, DT: Duplex Arrangement
 - DBD, DFD, DTD, DUD: Triplex Arrangement
 - DBB, DFF, DBT, DFT, DTT, QU: Quad Arrangement

- **Retainer:**
 - TR: Phenolic Cage
 - TYN: Polyamide Cage
 - T42: PEEK Cage

- **Material:**
 - S: Steel Ball
 - H: Ceramic Ball
 - X: SHX rings, ceramic balls

- **Contact Angle:**
 - A5 = 25°
 - C = 15°

- **Bore Number:**

- **Seal:**
 - No symbol: Open type
 - V1V: Non contact rubber seal

Robust Series, High-Speed Type

- **Precision Class:**
 - P4: ISO Class 4 (ABEC7)
 - P3: ISO Class 4 (ABEC9)
 - P2: ISO Class 2 (ABEC9)

- **Preload:**
 - EL: Extra Light
 - L: Light
 - Gxx: Preload in Kgf (G5=5 Kgf)
 - CPxx: Median Preload in Microns (CP10=10μm)
 - CAxx: Median Axial Clearance in Microns (CA15=15μm)

- **Mounting Configuration:**
 - SU: Single Universal
 - DU: Duplex Universal
 - DB, DF, DT: Duplex Arrangement
 - DBD, DFD, DTD, DUD: Triplex Arrangement
 - DBB, DFF, DBT, DFT, DTT, QU: Quad Arrangement

- **Seal:**
 - No symbol: Open type
 - V1V: Non contact rubber seal

- **Retainer:**
 - T: Phenolic Cage
 - TYN: Polyamide Cage
 - T42: PEEK Cage

- **Material:**
 - S: Steel Ball
 - H: Ceramic Ball

- **Dimension Series:**
 - 10: Same bore diameter, outside diameter, and width as the 70 series
 - 19: Same bore diameter, outside diameter, and width as the 79 series

- **Bearing Type:**
 - BNR: 15° Contact Angle
 - BER: 25° Contact Angle
 - BGR: 15° Contact Angle

- **Nominal Bore Diameter:**
BEARING SELECTION

Thrust Angular Contact Ball Bearings

Bearing Selection

- **Thrust Angular Contact Ball Bearings**
- **Precision Class:**
 - P4A: ISO Class 4, O.D. is Special
 - P4: ISO Class 4
 - P2A: ISO Class 2, O.D. is Special
 - P2: ISO Class 2
- **Preload:**
 - L: Standard Preload
 - BL: Standard Preload for High-Speed Applications
 - CP: Special Preload
 - CA: Special Axial Clearance
- **Combination:**
 - S: Single or Back Duplex
 - TYN: Polyamide Cage
- **Retainer:**
 - S: Steel Ball
 - H: Ceramic Ball
- **Dimension Series:**
 - 10: Arranged with NSX Series
 - 20D: High-Speed Type w/Revised Internal Features
 - 29D: High-Speed Type w/Revised Internal Features
- **Bearing Type:**
 - BAR: 30° Contact Angle
 - BTR: 40° Contact Angle
- **Material:**
 - S: Steel Ball
 - H: Ceramic Ball

Ball Screw Support Bearings

Ball Screw Support Bearings

- **Cylindrical Roller Bearings**
- **Precision Class:**
 - PN7: ISO Class 4, O.D. is Special
- **Dimension Series:**
 - 20D: High-Speed Type w/Revised Internal Features
 - 29D: High-Speed Type w/Revised Internal Features
- **Bearing Type:**
 - BAR: 30° Contact Angle
 - BTR: 40° Contact Angle
- **Bearing Bore Diameter (mm):**

Cylindrical Roller Bearings

Cylindrical Roller Bearings

- **Precision Class:**
 - P4A: ISO Class 4
 - P4: ISO Class 4
- **Radial Clearance:**
 - CC1: Standard clearance for cylindrical bore
 - CC0 Standard clearance for tapered bore
 - CCG: Special radial clearance
- **Mounting Configuration:**
 - BD: Single Universal
 - BD, DF, DT Duplex Arrangement
 - DBD, DFD, DTD, DDG - Triplex Arrangement
 - DBB, DFF, DBT, DFT, DTT, QU - Quad Arrangement
- **Seal Symbol:**
 - No symbol: Open type
 - DDG: Low friction contacting seal
- **Bearing D.C. (mm):**
- **Bearing Bore (mm):**

1. For inch series bearings, the fractional portion of the size is omitted.
2. CC0 clearance range less than CC1. This range overlaps with the upper values of CC9 and lower values of CC1, as this clearance is easy for customers to target this range, it is the preferred clearance offered for CSB with taper bore.
3. CC1 clearance Matched clearance range greater than CC0. While not the standard, this clearance is most popular in the field.
BEARING SELECTION

NSK Super Precision Bearings - Product Range

Several types of super precision bearings are available from NSK, including the ROBUST series of high performance bearings, the special series of bearings for unique and specialised applications, and the standard series bearings.

High Precision Angular Contact Ball Bearings

Standard Series
- NSK super precision bearings manufactured to conform to ISO standards.
- 70xx, 72xx, 79xx series
- Three types of contact angle: 15˚ (C), 25˚ (A5), 30˚ (A)
- Two types of cage design: Select either phenolic (TR) or polyamide (TYN), depending on application requirements
- Two types of ball material: Steel and Ceramic (SN24)

Basic NSA super precision bearings manufactured to conform to ISO standards.
- 70xx, 72xx, 79xx series
- Three types of contact angle: 15˚ (C), 25˚ (A5), 30˚ (A)
- Two types of cage design: Select either phenolic (TR) or polyamide (TYN), depending on application requirements
- Two types of ball material: Steel and Ceramic (SN24)

Ultra High-Speed Single Row Cylindrical Roller Bearings

Standard Series
- High performance cylindrical bearings designed for ultra-high-speed applications, such as machining centres spindles.
- Two types of cage material: Brass (MR) and PEEK resin (TP)
- Three types of roller material: Steel, SHX and Ceramic
- Ultra high-speed ROBUST RXH design can be used up to 3 million dnm.

Ultra High-Speed Angular Contact Ball Bearings

Standard Series
- High precision angular contact ball bearings designed for ultra-high-speed operation with low temperature rise. Suitable for ultra high precision machining applications, and ultra-high-speed applications.
- Two types of contact angle: 18˚ (BNR), 25˚ (BER)
- Two types of ball material: Steel (S type) and Ceramic (H and X type)
- Two types of cage design: Select either phenolic (T) or polyamide (TYN), depending on application requirements
- ROBUST series also can be used for ultra high speed applications of over 3 million dnm.

Ultra High-Speed Angular Contact Ball Bearings

BNR, BER Series
- Ultra high-speed angular contact ball bearings.
- Two types of contact angle: 18˚ (BNR), 25˚ (BER)
- Two types of ball material: Steel (S type) and Ceramic (H and X type)
- Two types of cage design: Select either phenolic (T) or polyamide (TYN), depending on application requirements
- ROBUST series also can be used for ultra high speed applications of over 3 million dnm.

High-Speed Angular Contact Thrust Ball Bearings

Standard Series
- High rigidity thrust bearings for lathe applications.
- Two types of contact angle: 30˚ (BAR), 40˚ (BTR)
- Two types of ball material: Steel (S type) and Ceramic (H type)
- Non separable type
- Universal combinations (DU and SU)

Ultra High Precision Angular Contact Ball Bearings

BGR Series
- High Performance bearings developed specifically for internal grinding or high-speed motor applications under spring preloaded.
- Bore size range: ø6–25 mm, contact angle: 15˚
- Two types of ball material: Steel (S type) and Ceramic (H and X type)
- Non separable type
- Universal combinations (DU and SU)

Angular Contact Thrust Ball Bearings for Ball Screw Support

Standard Series
- High rigidity thrust bearings designed specifically for ball screw support applications in machine tools.
- Contact angle: 60˚
- Can be universally matched to any required rigidity specification or life cycle
- A pre-greased line using special grease is also available
- A new series is available, supplied with contact seals and waterproof grease

Angular Contact Thrust Ball Bearings for Ball Screw Support

Special Series
- The high load capacity design delivers five times the life expectancy compared to ball screw support bearings for machine tool applications of a similar size. The number of rows can also be reduced.
- Easier handling than tapered roller bearings or thrust spherical roller bearings as a result of non-separable configuration
- Optimum ball bearing design results in lower rotational torque
- Can be universally matched to any required rigidity specification or life cycle

Angular Contact Thrust Ball Bearings for Ball Screw Support

For Injection Molding Machines
- Suitable for high-speed and high precision motors.
- Three types of cage: Ball guided polyamide cage (T1X, TYA) and inner ring guided phenolic cage (T), selection depends on the application
- Suitable for silent or low vibration operation
Identification Markings

NSK Precision bearings carry useful information for both the designers and fitters. The box itself will indicate date codes, serial numbers, and bore, outer diameter and width deviations. This information is also found on the bearing so even if the box is lost, all the relevant information is still available.

Product Serial Number

Every NSK brand bearing has a unique serial number; this enables complete traceability of the product since final inspection data is stored within NSK records associated with this number.

Size Deviations

Every precision bearing is 100% inspected and the size deviations are indicated on both the box and the bearing. The outer ring contains the size deviation of the outer ring OD and the bearing width deviation respectively and the inner ring contains the size deviation of the inner ring bore. This information is also placed on the box.

The example box above indicates that in this example the bearing inner ring bore is 25mm –1 microns i.e. the exact size is 24.999mm. The outer ring is 47mm –3 microns i.e. the exact size is 46.997mm. The bearing width is 12mm – 57 microns i.e. the exact size is 11.943mm.

* Bearing envelope dimensions found from the global catalogue

Vee Lining – Individual Bearings

A single Vee line is placed on the outer diameter of the outer ring. The positioning of the Vee serves two purposes:

1. The radial position indicates the point of maximum ring thickness, i.e. the position of maximum outer ring runout.
2. The point of the Vee indicates the open face of the bearing. This is particularly useful when using sealed bearings since the same size seal is often used on each side of the bearings making it difficult to see which is the open face.
Vee Lining – Bearing Sets

If bearings are ordered in matched sets there will also be a vee line marked across the complete set as well as the individual vee line. Bearings used in matched sets should not be taken out of the sequence of the set.

Examples of matched sets with overall vee line:

The direction of the overall vee also indicates the direction of axial loading; this is important when the bearing arrangement is non-symmetrical as shown below.

Inner Ring High Point Marking

The 'O' on the face of the inner ring indicates the position of the maximum ring thickness i.e. the position of maximum ring runout.

How to use High Point Marking

Optimum running accuracy is achieved when the bearing is mounted so that the ring high points are directly opposite (180°) to the high points on the housing and shaft.

With regard to the shaft, find the high point using a suitable DTI (Dial test indicator) and mount the bearing with the inner ring high point at 180°.

With regard to fitting the outer ring into the housing, mount the outer ring vee mark 180° to the high point measured in the housing.

If the runout of the shaft is measured at 2μm, placing the inner ring as shown above can help to reduce the runout close to zero. The shaft runout is much more important than the housing runout, which can also be more difficult to measure accurately.

Identification Markings

BSO

1. Useful Tip

If it is not possible to measure the shaft and housing runouts it is advisable to position the bearing high points out of line so as to avoid accidentally aligning the bearing high points with the shaft high points thereby increasing overall runout.
Contact Angle
A fundamental part of the angular contact bearings is the contact angle. These bearings can only take axial load in one direction unless they are used in sets (see universal sets).

For high-speed applications using motorised spindles, the internal heat generation can be much higher than belt driven spindles; this can reduce the bearing internal clearance and sometimes cause failure at high-speed.

Effect of Contact Angle - Standard Designations
For high-speed products; 18° has been adopted as the lowest standard contact angle. This has been shown to be more effective at high-speeds in terms of bending stiffness compared to 15°. An 18° contact angle provides better axial stiffness than 15°, but less radial stiffness.

However, as seen from the spindle diagram, bending stiffness is more important.

Examples of Contact Angle - High-Speed and Thrust Designations
- 15° Robust High-Speed
- 18° Robust High-Speed
- 25° Robust High-Speed
- 30° Robust Thrust
- 40° Robust Thrust
- 60° Ball Screw Support

For these applications it is more beneficial to select a 25° contact angle because this has a greater radial internal clearance (RIC) compared to the 18° contact angle and can more easily accommodate a reduction in internal clearance due to thermal movement.
The preload step is manufactured on the rear face of the inner ring and the front face of the outer ring, both steps are exactly the same depth therefore the universal bearing can be used in any combination.

Face to Face (DF Arrangement)
This arrangement is often used for ball screw support bearing applications. The preload is produced by the ‘Gap’ (2 x the step f) of the outer ring faces being squeezed together by an end cap in the housing. This type of arrangement is particularly useful when good alignment cannot be guaranteed between the housings. This can be the case for Ball Screw Support Bearings since ball screws can often be 1 to 5 metres in length.

Tandem (DT Arrangement)
This arrangement needs to be used with another bearing or set of bearings in the opposing direction in order to produce a preload (see diagram). Bearings are used in these arrangements when there is a need for higher stiffness due to higher axial loads on the spindle.

Back to Back (DB Arrangement)
The majority of machine tool applications use this type of arrangement. The preload is produced by the ‘Gap’ (2 x the step b) of the inner ring faces being squeezed together by a locknut on the shaft. This type of arrangement is particularly useful where moment loads are used but the accuracy of the housing must be high to reduce misalignment.

Universal Sets
The term universal means that the bearings can be used in any arrangement, tandem, back to back or face to face.

Universal Bearing
\[f = b \]

f:
Offset of Front Face

b:
Offset of Rear Face

SU = Single Universal Bearing
DU = Duplex Universal Bearing
DUD = Triplex Universal Bearing
QU = Quadruplex Universal Bearing

Other universal bearing combinations are shown below:

DU Combinations:

DUD Combinations:

QU Combinations:
Bearing Selection

Typical Tolerances for 7014 (μm)

<table>
<thead>
<tr>
<th></th>
<th>P4</th>
<th>P3</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore</td>
<td>0 to -7</td>
<td>0 to -7</td>
<td>0 to -4</td>
</tr>
<tr>
<td>OD</td>
<td>0 to -8</td>
<td>0 to -8</td>
<td>0 to -5</td>
</tr>
<tr>
<td>Width</td>
<td>0 to -150</td>
<td>0 to -150</td>
<td>0 to -150</td>
</tr>
<tr>
<td>Radial Runout</td>
<td>0 to 4</td>
<td>0 to 2.5</td>
<td>0 to 2.5</td>
</tr>
<tr>
<td>Axial Runout</td>
<td>0 to 5</td>
<td>0 to 2.5</td>
<td>0 to 2.5</td>
</tr>
</tbody>
</table>

Precision Grades

Bearings are manufactured in different precision grades. The lower P number the smaller the tolerance and greater the running accuracy.

<table>
<thead>
<tr>
<th>NSK</th>
<th>P5</th>
<th>P4</th>
<th>P3*</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Friction Bearing Manufacturers Association (AFBMA, Standard 20)</td>
<td>ABEC5</td>
<td>ABEC7</td>
<td>-</td>
<td>ABEC9</td>
</tr>
<tr>
<td>International Standards Organisation (ISO 492)</td>
<td>Class 5</td>
<td>Class 4</td>
<td>-</td>
<td>Class 2</td>
</tr>
<tr>
<td>DIN (Deutsch Industrie Norm)</td>
<td>P5</td>
<td>P4</td>
<td>-</td>
<td>P2</td>
</tr>
</tbody>
</table>

* P2 Runout, P4 External Tolerances

External Tolerances

The table above shows the comparison of different accuracy standards. NSK use the DIN system where P2 is the greater accuracy. Additionally NSK have introduced a P3 (same external accuracies as P4 but higher internal accuracies, same as P2).

External Tolerances

Effects of Internal Tolerances-
Radial and Axial Runouts

P2 and P3 tolerance is the highest internal geometry accuracy; this results in the best radial and axial runout values.

Example:
The bearing on the right (7008CTYNSULP4) has nominal dimensions from catalogue of:

- OD = 68mm
 - Deviation on bearing and box = –4μm
 - Therefore exact OD = 67.996mm
- Bore = 40mm
 - Deviation on bearing and box = –4μ
 - Therefore exact bore = 39.996
- Width = 15mm
 - Deviation on bearing and box = –100μm
 - Therefore exact width = 14.900mm

Bearing sets are matched to within 1/3rd of the overall tolerances. This is to enable optimum load sharing when fitted to the shaft and housing. P2 external tolerances tend to be approximately half of P4 and therefore are sometimes used for random matching. However there is a price penalty for P2 standard.

2. Useful Tip

The use of P3 Precision grades is more cost effective than P2. With single micron grading it is possible to select the correct bearings for matching into sets. Internal geometry of P3 is the same as P2.

Single Micron Grading

All NSK bearing have single micron grading for bore, OD & width. This means that the exact dimension of every bearing can be found.
Preload - Angular Contact Bearings

The preload between angular contact bearings is achieved by clamping a pair or multiple number of bearings together. NSK has 4 standard preload arrangements as shown opposite. This allows greater flexibility in machine design and more importantly when replacing different brands.

All angular contact bearings need to operate with preload due to the following reasons:

- Elimination of radial and axial play
- Increased rigidity
- Reduced runouts, increasing accuracy
- Helps to prevent ball skid at high-speed

There are two types of preloading methods:

1) Constant Pressure (Spring Preload)

This type of preload is primarily use for grinding applications or very fast machining. The speeds quoted in the catalogue are all for this type of preload. This preload is achieved by the use of sets of coiled or leaf springs.

In the above arrangement, even if the relative position of the bearings change during operation the magnitude of the preload remains relatively constant.

2) Position Preload (Fixed Preload)

This is the most common type of preload arrangement and can either be arranged with or without spacers. The main advantage of this type is that the stiffness (rigidity) is much higher. However, the speed quoted in the catalogue needs to be factored according to the amount of preload and number of bearings in the set.

This information is given in the NSK Super Precision catalogue and printed below for reference.

Speed Factor Table

<table>
<thead>
<tr>
<th>Arrangement</th>
<th>EL</th>
<th>L</th>
<th>M</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>0.85</td>
<td>0.80</td>
<td>0.65</td>
<td>0.55</td>
</tr>
<tr>
<td>DBB</td>
<td>0.80</td>
<td>0.75</td>
<td>0.60</td>
<td>0.45</td>
</tr>
<tr>
<td>DBD</td>
<td>0.75</td>
<td>0.70</td>
<td>0.55</td>
<td>0.40</td>
</tr>
</tbody>
</table>

NSK has the most levels of standard preload available:

EL = Extra light – fastest speed, less rigidity
L = Light – slightly higher rigidity
M = Medium – lower speed, good rigidity
H = Heavy – highest rigidity, lowest speed

There are also special preloads and axial clearances available:

Special Preloads and Axial Clearance

Gxx is special preload (xx is the mean preload in kgf)
CPxx is special preload (xx is the mean preload gap in μm)
CAxx is a special clearance (xx is measured axial clearance in μm)

Special preloads are available on request. In some cases these are generated as Gxx where xx is the amount of preload force i.e. G5 = 5kgf. This is mainly used for some special Ball Screw Support Bearings. Or an axial preload gap is quoted i.e. CP10 = 10μm preload gap.
Axial Clearance

An axial clearance means that there is no initial preload. This type of arrangement is often used when application speeds are high and the bearing inner ring fit is much tighter than normal, this is to prevent a loss of fit between the inner ring and shaft due to centrifugal expansion of the inner ring. When the bearing is fitted with the tighter fit the radial expansion of the bearing due to the fit increases the amount of preload to a normal level. If an application requires a special CAxx level, it must not be substituted by a standard E, EL, M or H level preload and run at the same speed, this could cause premature seizure.

Effects of Preload on Bearing Performance

The amount of preload affects the performance of angular contact bearings. The diagrams below show the effects on rigidity, temperature, life and speed \((d_m, n)^*\) for a pair of 7020 with a 15° contact angle.

Effects of Preload on Rigidity and Speed

- **Axial Rigidity**
- **Radial Rigidity**
- **Limiting \(d_m\) Value**

![Diagram showing effects of preload on rigidity and speed](image)

Effects of Preload on Temperature and Life

The graphs show that as the preload level increases, both the axial and radial rigidity (stiffness) increase, speed capability reduces and temperature increases.

In order to maintain high rigidity, it is necessary to sacrifice speed. Similarly in order to achieve high-speed is necessary to sacrifice rigidity. To run at higher than factored catalogue speed with heavy preload could lead to thermal instability and premature seizure of the bearing.

Bearing Combinations

Angular contact bearings are usually used as multiple bearing sets. Two rows, three rows and four rows are the most usual multiple bearing sets. Bearings are used in multiples to increase the load carrying and stiffness capability. When the number of rows is increased, the rigidity and the load capacity become larger but the limiting speed is reduced.

Depending on the arrangements loads can be taken from either one or both directions.

The DT arrangement can only take load in one direction but since there are two bearings with the contact angle in the same direction it has twice the axial stiffness as a single row bearing. A set of four bearings arranged symmetrically, could take loads in both directions and have twice the axial stiffness in both directions.

\[d_m = \text{the bearing mean diameter (mm)} \times \text{the speed in rpm} \]

\[d_m = \frac{D + d}{2} \]

where \(D = \text{OD} \) and \(d = \text{bore} \)
Preload - Angular Contact Bearings

Bearing Combinations

In the example of three rows, it can be seen that the internal preload is not shared evenly, this means that one bearing is taking twice the preload of the pair and will operate at a slightly higher temperature. For this reason, it can be seen from the Speed factors table (page 14), that the speed capability of a set of three is less than a set of four.

Load can be applied from either direction but greater load is achieved from the left side.

Capacities and Rigidities for Multiple Bearings

The single row capacities are shown in the NSK Super Precision catalogue axial rigidity was 200N/μm for 15°, Light preload; the radial stiffness for three or four bearings in a set, i.e. if the catalogue axial rigidity was 200N/μm for 15°, Light preload; the radial rigidity for a set of 3 would be 200x6x1.54 = 1848N/μm.

Likewise multiply the value of radial stiffness found in the table above by the factor in the table to the left. To derive the radial stiffness for three or four bearings in a set, i.e. if the catalogue axial rigidity was 200N/μm for 15°, Light preload; the radial rigidity for a set of 3 would be 200x6x1.54 = 1848N/μm.

The table below shows the multiplying factors for both the dynamic (C) and static (C) bearing capacities:

Capacities and Rigidities for Multiple Bearings

<table>
<thead>
<tr>
<th>Number</th>
<th>Double row</th>
<th>Triplex row</th>
<th>Quadruplex row</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>79</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>11</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>10</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

The NSK Super Precision catalogue also states the preload and axial rigidity for pairs of all products. This information is useful when testing a newly assembled spindle. The radial rigidity can be simply calculated by using the factors in the table below i.e. for Light preload and 15° contact angle, multiply axial stiffness found in the catalogue by 6 to get the radial stiffness.

Calculation of Radial Rigidity

<table>
<thead>
<tr>
<th>EL</th>
<th>L</th>
<th>M</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°</td>
<td>6.5</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>18°</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30°</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40°</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To find the preload and axial rigidity for 3 and 4 rows of bearings, multiply the values given in the catalogue by the factors in the table below.

Stiffness and Preload for Sets

<table>
<thead>
<tr>
<th>DBB</th>
<th>DBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preload factor</td>
<td>1.36</td>
</tr>
<tr>
<td>Axial rigid</td>
<td>1.48</td>
</tr>
<tr>
<td>Radial rigid</td>
<td>1.54</td>
</tr>
</tbody>
</table>

Rule:

To increase preload: reduce inner ring spacer
To reduce preload: reduce outer ring spacer

Remember: this is for emergency situations only, if the preload is changed in this way care should be taken to document the changes so that if the bearings are replaced in the future the correct preload is selected to allow for the spacer changes.

BEARING SELECTION

3. Useful Tip

In an emergency situation, if the correct preloaded bearing is not available and spacers are used, it is possible to use a different preload set of bearings and adjust the spacers to compensate. The NSK Super Precision catalogue shows the axial clearances for each set of angular contact bearings.

Example:

If a 7906CTRDU-P4 is required but only 7906CTRDU-X8 is available, the spacer can be machined to compensate for the different preload. From the table above for 30mm bore the Heavy preload axial clearance is 16μm and the Medium preload axial clearance is 9μm. Therefore to change from Medium preload to Heavy preload it is necessary to change the spacer length by the difference i.e. 16μm – 9μm = 7μm. In this case because we are increasing the preload we need to reduce the inner ring spacer by 7μm and leave the outer spacer untouched.

This information has been extracted from the Global catalogue or can be found on pages 65 to 67 for your reference.
In order for machine tool spindles to have high running accuracy and rigidity, cylindrical roller bearings should be operated with either controlled radial clearances or preload.

Roller bearings are supplied with standard RIC (Radial Internal Clearance) values:
- CC1 for cylindrical bores
- CC0 for tapered bores
- CC9 is a reduced clearance for tapered bores when used with light fits (non-standard). This should not be used in high-speed since the fit may not be adequate.

The clearance/preload of a tapered bore bearing can easily be changed in-situ by pushing the bearing up the 1:12 taper. The dial gauge can only indicate the clearance situation.

To apply a radial preload it is necessary to use a special NSK gauge or follow the technique outlined in Mounting Section.

Reasons for Using Preloaded Conditions

If the cylindrical bearing is run with a clearance, only a small proportion of the roller will carry the radial load. This portion increases as the clearance is reduced to zero. However when preloaded, it can be seen that all the rollers are under load, this helps to increase life and also increases the bearing stiffness.

Amount of Preload

Tests have shown that the optimum amount of preload is between zero to 3μm tight for the front roller bearing and a slight clearance (-2 to -5μm) for the rear roller bearing. The graph below shows the bearing rigidity for clearance (right hand side) and preload (left hand side).

The life relationship between clearance and preload can be seen below. The values will vary for different sizes of bearings but will be the same trend.
Bearing Matching

Bearing Matching Chart
When bearings are ordered in defined sets i.e.

The adjacent bearings in the set are selected in the factory so that the maximum difference in bore or OD tolerance is within one third of the overall size tolerance. This is to ensure that once the bearings are fitted to the shaft and in the housing that the fits from bearing to bearing are fairly similar and thereby the load distribution within the bearing set is shared equally.

All NSK bearings are 100% inspected and the bore and OD size deviation in microns is marked on both the bearing and the box. For designers this is a useful feature since it allows the shaft and housing to be made to suit the bearings. For example shown above the bore of the inner ring has a deviation from nominal of ~1micron. If this inner ring was nominally 70mm diameter then the exact bore diameter will be 69.999mm.

For repair shops this information is even more valuable since it allows greater flexibility when ordering bearings and enables different combination arrangements to suit different spindle designs.

Some Possible Spindle Arrangements

It can be seen that it would be very expensive to stock every combination of different spindle arrangements. With the use of the single micron grading the repairer only need to stock a suitable number of either SU’s or DU’s and the correct number of bearings can be assembled together by the repairer as long as the bore and OD deviations are within one third of the overall bearing tolerance.

Nominal OD Diameter

1/3rd Tolerance Bands

Total OD Tolerance

Nominal Bore Diameter

1/3rd Tolerance Bands

Total Bore Tolerance

NSK provide a handy sliding chart that enables bearings to be easily matched into appropriate sets. First select the series i.e. 73xx, 72xx, 70xx or 79xx and then the precision grade, P2, P3 or P4 and slide the chart to the appropriate bearing size to find the allowable difference in inner ring size deviation for each bearing in the set and independently for the outer ring OD for each bearing in the set.

The examples above show that for a large bearing a greater tolerance between bearings in each set can be used. In general most bearings can be matched within 2 microns to give optimum load sharing.
Cleanliness and Washing

Cleanliness
In order to obtain the optimum performance from spindle bearings it is necessary to ensure that the environment in which they are fitted is of the best possible cleanliness condition. Ideally dismantling and assembling of spindles should be separated to ensure no cross contamination. Below is an ideal spindle room layout.

Ideal Spindle Room

It is not always practical for some organisations to use the ideal model above, below is a list of essential improvements, good improvements and ideal improvements. Depending upon the organisation’s current situation the appropriate areas for improvement can be selected:

1 - Essential
 • Separate wash tanks
 • Separate work bench
2 - Good
 • Separate tools
3 - Ideal
 • Separate room (restricted personnel)

The washing solutions for bearings should be finely filtered to at least 5μm and any air supply needs to be filtered with appropriate de-humidifiers to prevent water contamination.

Tools should be clean at all times when assembling bearings and free of burrs that could cause damage to the bearings whilst fitting.

Handling Bearings
Avoid heavy shocks during handling. Shock loads can scratch or damage a bearing, possibly resulting in failure. An excessively strong impact may cause brinelling, breakage or cracks.

Relative Size of Some Contaminates

Corrosion Prevention
Handling bearings with bare hands can corrode the bearing surfaces because of the acidic moisture or other contaminates on the hands. When handling bearings it is best to wear lint free protective gloves.
Global Packaging
When NSK bearings are supplied in the new global packaging specification, there is no need to pre-wash the bearings before mounting.

The Global packaging has the following features:
- Low viscosity preservative oil that is chemically compatible with common machine tool bearing greases
- VPI (Vapour Phase Inhibitor) impregnated into the nylon polyethylene laminated bag. This gives extra corrosion protection
- Bearing vacuum packed and heat-sealed for added protection from the outside environment

This same packaging method is used for factory-greased bearings and all sealed bearings. So there is no need to pre-clean the bearings before mounting.

Cases for Cleaning Bearings
In certain circumstances it is necessary to clean bearings before mounting this will be the case when:
- Packaging does not conform to the standard described above
- Ultra-high-speeds are required such as when using some 'Robust' bearings
- Roller bearings - particularly need cleaning in order to remove oil film before measuring and setting the correct radial internal clearance at mounting

Method of Cleaning
1. Use Kerosene or light oil to clean the bearings.
2. Use separate tanks for first cleaning and final cleaning. Each tank should be equipped with a wire rack to prevent direct contact of the bearing with any contamination that may have settled at the bottom.
3. In the first cleaning tank, avoid rotating the bearings. After cleaning the outside surfaces with a soft brush, move the bearings to the final cleaning tank.
4. In the final cleaning tank, rotate the bearing by hand very gently. Make sure that the cleaning fluid in the final cleaning tank is kept clean.
5. Remove excess cleaning fluid from the bearing after cleaning. Allow the bearing to completely dry before applying grease or oil using a lint free cloth.

Bearings using ordinary grease lubrication need to be packed with grease before leaving open to the environment since the metal surfaces will be vulnerable to corrosion at this stage.

Oil lubricated bearings should be mounted on the machine tool taking care not to rotate the bearing. Prior to mounting it is recommended to lightly coat the inner and outer surfaces with a clean light film of oil to assist mounting.

Note:
Once bearings are washed and cleaned, avoid rotation before lubricating since this can cause damage to the rolling elements and raceways.

Additional information can be found on the greasing process on page 22.
For cylindrical roller bearings:

1. Coat about 80% of the grease quantity around the roller rolling surfaces taking care not to put too much grease on the cage bore. (This can cause high temperatures during start up.)

2. Smooth a thin coat of grease over the rollers including the roller ends, roller cage contact points and along the face edges of each cage pocket.

3. Use the remaining 20% of grease to apply a thin film to the raceway surface of the outer ring.

Greasing Process

The greasing process is very important to the successful performance of the bearing. Extra care needs to be taken to ensure no contamination enters the bearing at this point.

The following is a good practice guide to the greasing of bearings:

- Take care to ensure that grease tin lids are always replaced after use
- Keep grease tins/tubes in a clean separate store in a stable temperature
- Label tins/tubes with dates, do not use over three years old
- Use clean spatulas for dispensing grease, ideally use plastic syringes

Quantity and Position of Grease in Bearing

The ideal quantity of grease for a spindle bearing is: 15% of the bearing free volume for angular contact bearings and 10% of the free volume for cylindrical roller bearings. The exact quantities in cubic centimetres for the complete range of NSK bearings can be found in table on page 23.

For angular contact bearings with ball guided TYN type cage: pack the grease evenly between the balls from both sides of the bearings.

For outer ring guided phenolic type cages pack half of the quantity between the inner ring OD and cage bore on the rear side of the bearing and the remaining half between the cage OD and the counter bore of the front face of the bearings. For either type cage, rotate the bearing by hand to spread the grease evenly on the surfaces of the raceways, balls and cage.

4. Useful Tip

Use a syringe to apply the correct quantity of grease in the correct position.
The Recommendable Grease Quantities for High-speed Spindle Bearings

The greasing process is very important to the successful performance of the bearing. Extra care needs to be taken to ensure no contamination enters the bearing.

PRE-MOUNTING

<table>
<thead>
<tr>
<th>Bore number</th>
<th>Bore diameter</th>
<th>Angular contact ball bearings: 15% of internal free space</th>
<th>Ball screw support bearings: 35% of internal free space</th>
<th>Cylindrical roller bearings: 10% of internal free space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S-quantity</td>
<td>X-quantity</td>
<td>S-quantity</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>–</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>–</td>
<td>0.07</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>–</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>0.06</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>01</td>
<td>12</td>
<td>0.08</td>
<td>0.14</td>
<td>0.23</td>
</tr>
<tr>
<td>02</td>
<td>15</td>
<td>0.11</td>
<td>0.18</td>
<td>0.29</td>
</tr>
<tr>
<td>03</td>
<td>17</td>
<td>0.13</td>
<td>0.24</td>
<td>0.41</td>
</tr>
<tr>
<td>04</td>
<td>20</td>
<td>0.23</td>
<td>0.44</td>
<td>0.68</td>
</tr>
<tr>
<td>05</td>
<td>25</td>
<td>0.27</td>
<td>0.52</td>
<td>0.85</td>
</tr>
<tr>
<td>06</td>
<td>30</td>
<td>0.31</td>
<td>0.69</td>
<td>1.2</td>
</tr>
<tr>
<td>07</td>
<td>35</td>
<td>0.48</td>
<td>0.98</td>
<td>1.7</td>
</tr>
<tr>
<td>08</td>
<td>40</td>
<td>0.75</td>
<td>1.2</td>
<td>2.1</td>
</tr>
<tr>
<td>09</td>
<td>45</td>
<td>0.83</td>
<td>1.5</td>
<td>2.6</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>0.91</td>
<td>1.6</td>
<td>3.0</td>
</tr>
<tr>
<td>11</td>
<td>55</td>
<td>1.1</td>
<td>2.4</td>
<td>3.9</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>1.2</td>
<td>2.6</td>
<td>4.8</td>
</tr>
<tr>
<td>13</td>
<td>65</td>
<td>1.3</td>
<td>2.6</td>
<td>5.7</td>
</tr>
<tr>
<td>14</td>
<td>70</td>
<td>2.1</td>
<td>3.6</td>
<td>6.5</td>
</tr>
<tr>
<td>15</td>
<td>75</td>
<td>2.3</td>
<td>3.6</td>
<td>7.6</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
<td>2.4</td>
<td>5.1</td>
<td>8.7</td>
</tr>
<tr>
<td>17</td>
<td>85</td>
<td>3.5</td>
<td>5.3</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>90</td>
<td>3.6</td>
<td>6.6</td>
<td>13</td>
</tr>
<tr>
<td>19</td>
<td>95</td>
<td>3.6</td>
<td>6.8</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>4.9</td>
<td>7.2</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>105</td>
<td>5.1</td>
<td>9.0</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>110</td>
<td>5.2</td>
<td>12</td>
<td>27</td>
</tr>
<tr>
<td>23</td>
<td>120</td>
<td>7.3</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>24</td>
<td>130</td>
<td>9.0</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>25</td>
<td>140</td>
<td>9.9</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>26</td>
<td>150</td>
<td>16</td>
<td>28</td>
<td>59</td>
</tr>
<tr>
<td>27</td>
<td>160</td>
<td>16</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>170</td>
<td>14</td>
<td>42</td>
<td>33</td>
</tr>
<tr>
<td>29</td>
<td>180</td>
<td>22</td>
<td>51</td>
<td>46</td>
</tr>
<tr>
<td>30</td>
<td>190</td>
<td>27</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>31</td>
<td>200</td>
<td>39</td>
<td>76</td>
<td>61</td>
</tr>
<tr>
<td>32</td>
<td>210</td>
<td>42</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>33</td>
<td>220</td>
<td>44</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>34</td>
<td>240</td>
<td>41</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>35</td>
<td>260</td>
<td>77</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>36</td>
<td>280</td>
<td>80</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Do not operate bearings at full spindle speed when bearings are first installed. It is necessary to run the grease in, see page 43.

The grease quantity of “xV/ACOS5BBWDX” should be the same as the double row cylindrical roller bearings, which is assembled with this bearing together.

* 45TAC70 and 45TAC80
** 45TAC75 and 45TAC100
*** S5TAC100 and S5TAC150

NSK | 23
Component Checks

Component Checks

Some machine fitting can be quite complicated and take in the region of a full shift to complete. In such cases it is particularly important to check all components during the fitting process, this can eliminate unnecessary problems at the end of the process when the machine is commissioned.

The following guidelines will be useful:

- Both shaft and housings should be checked for flaws or burrs
- The dimensions of the shaft outer diameter and housing bores should be checked for correct size and fit. (Recommended fits for shafts and housings are given in the Global catalogue). Generally an interference fit is used on the shaft provided the application is inner ring rotating, and a clearance fit is used in the housing
- Be careful to check the components in a number of positions to check for taper and shape as well as size (figure above shows a typical method for the shaft and figure below shows the typical method for the housing)
- When taking any measurements it is important to ensure that the components are in a thermally stable state

Runouts Checks

Shaft radial and axial runouts should be checked to ensure that the bearing has the best possible seating accuracy. Ideally the shaft should be measured between accurate centres, however, if this is not possible use a surface plate as shown in figure below.

Typical target values will depend upon the application, in general a target of 3 to 5 microns would be desirable.

Obtaining runouts of the housing is a little more difficult and although not as important as the shaft can be useful in eliminating future errors. Figure below shows a typical set up for obtaining the runout for the housing and cover shoulders.

Typical target values will depend upon the application, in general a target of 3 to 5 microns would be desirable.

Spacers

Inner ring and outer ring spacers for spindle bearings should be identical in length. (Any difference will affect the preload). Ideally they should be machined together to the correct width. Parallelism errors should not exceed 3microns. (Values greater than this level can cause enough misalignment to cause bearing inaccuracies and possible noise).
Mounting

- Fitting Bearings to Shaft 26
- Locknut Torques 27-28
- Spindle Runout Checks 27-28
- Fitting Spindle to Housing 28
- Mounting Tapered Bore Roller Bearings 29-32
 - Calculation Method 29-30
 - Gauge Method 31-32
- Classical Spindle Arrangements 33
- Summary of Spindle Arrangements 34-38
 - Heavy Duty Spindle 35-36
 - Medium to High-Speed Spindle 37-38

NSK | 25
Fitting Bearings to Shaft

Mounting Bearings
There are two main methods of fitting bearings to a shaft are (i.) Press fit, (ii.) Shrink fit.

Press Fit
Press fits tend be used for smaller bearings typically less than 30mm bore. It is usual to lightly oil the mating parts in order to reduce the force required for fitting. When fitting the inner ring care should be taken to ensure the press force is directed through the inner ring. In the diagram shown, a hole can be seen in the pressing piece to allow air to escape.

Cylindrical Roller Bearings
When the bearing is separable, the inner and outer rings can be mounted on the shaft and into the housing as separate units. Care should be taken when assembling them both together to ensure correct alignment so as to avoid scratches on the contact surfaces.

Shrink Fit
This is used on larger bearings and requires heating the inner ring to expand the bore and allow fitting to the shaft with minimal effort.

Care should be taken not to overheat the bearing and ideally only the inner ring needs to expand.
A maximum of 120° should be applied to the bearing. For a bore diameter of 80mm, heating the inner ring to 40°C above the outer ring will expand it by 40μm. (See Expansion Chart).

Hotplate Method
It is recommended that a steel ring is used between the hot plate and the bearing inner ring in order to conduct the heat to the inner ring and avoid heating balls, cage, outer ring and possibly lubricant.

Induction Heater Method
An induction heater is a very convenient method of heating the inner ring and the temperature can be controlled thereby preventing overheating of the bearing.

6. Useful Tip
A hot air gun can be very useful for directing heat at the inner ring only (especially for large bearings). This method can also be used to heat a housing before inserting the shaft/bearing assembly.

Process
Heat the bearings to required temperature plus 20° to 30° to allow for cooling from heating device to spindle. After fitting each bearing ensure that an axial pressure is applied while the bearing is cooling down.
(As the bearing cools it will shrink in both axial and radial directions therefore without additional pressure the bearing may not be seated correctly). Allow cooling to room temperature +5°C before fitting the next bearing.
Mounting Locknut Torque

It is important to apply the correct locknut torque or clamping force to enable the preload gap to be closed and to prevent loosening during operation. It is also important not to use excessive force as this can distort the bearing raceways and cause loss of accuracy and possible failure; also if spacers are used between the bearings, excessive axial force could squeeze the inner spacer shorter than the outer spacer and this would increase the preload.

The table below shows both the axial force (useful if using a hydraulic locknut) and torque for standard locknuts.

<table>
<thead>
<tr>
<th>Nominal bearing bore (mm)</th>
<th>Locknut tightening force (N)</th>
<th>Locknut tightening torque (N-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>25</td>
<td>4,900</td>
<td>21</td>
</tr>
<tr>
<td>30</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>40</td>
<td>9,800</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>55</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>60</td>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td>65</td>
<td>14,700</td>
<td>153</td>
</tr>
<tr>
<td>70</td>
<td>166</td>
<td>166</td>
</tr>
<tr>
<td>75</td>
<td>176</td>
<td>176</td>
</tr>
<tr>
<td>80</td>
<td>251</td>
<td>251</td>
</tr>
<tr>
<td>85</td>
<td>267</td>
<td>267</td>
</tr>
<tr>
<td>90</td>
<td>281</td>
<td>281</td>
</tr>
<tr>
<td>95</td>
<td>295</td>
<td>295</td>
</tr>
<tr>
<td>100</td>
<td>19,600</td>
<td>311</td>
</tr>
<tr>
<td>105</td>
<td>327</td>
<td>327</td>
</tr>
<tr>
<td>110</td>
<td>343</td>
<td>343</td>
</tr>
<tr>
<td>120</td>
<td>371</td>
<td>371</td>
</tr>
<tr>
<td>130</td>
<td>403</td>
<td>403</td>
</tr>
<tr>
<td>140</td>
<td>449</td>
<td>449</td>
</tr>
<tr>
<td>150</td>
<td>695</td>
<td>695</td>
</tr>
<tr>
<td>160</td>
<td>745</td>
<td>745</td>
</tr>
<tr>
<td>170</td>
<td>29,400</td>
<td>796</td>
</tr>
<tr>
<td>180</td>
<td>841</td>
<td>841</td>
</tr>
<tr>
<td>190</td>
<td>886</td>
<td>886</td>
</tr>
<tr>
<td>200</td>
<td>932</td>
<td>932</td>
</tr>
<tr>
<td>220</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>240</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>260</td>
<td>38,200</td>
<td>–</td>
</tr>
<tr>
<td>280</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>300</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Lubrication Checks

If error is in this direction

Gently tapping the nut in this position can reduce the bending error

Spindle Checks

It is beneficial to check the spindle at each stage of the assembly process. After fitting the front bearings and clamping the locknut check spindle radial runout as shown. A target runout value of less than 2μm is recommended, however if application speeds are low, values up to 5μm are acceptable. Tapping gently on the outer ring end face can help to adjust the runout. Using the end cover and a steel ring to support the spindle on the outer ring face, the spindle can be rotated and a runout reference taken on the shaft. This should be targeted to below 5μm.

Inaccuracies in the locknut can cause the shaft and bearing to bend when tightened. The tip below shows one method to reduce this effect.
Assembly into Housing
Care should be taken when assembling bearings into the housing. Usually a clearance fit is used but if alignment is not true it could be possible to damage or dismantle a bearing. Heating the housing using an air gun as described in the TIP section helps to increase the clearance and avoid this problem.

Back to Back Arrangement
1. Assemble bearing.
2. Tighten locknut.
3. Insert as shown into housing.

Face to Face Arrangement
1. Press bearings into housing.
2. Secure retaining cover for preloading.
3. Insert shaft into inner ring and tighten bearing locknut.

Retaining Cover Tightening
The bearing rings can become deformed if the retaining cover is not secured correctly. The above diagram shows the effect of uneven tightening of the retaining cover; in this case only four bolts are used and not torqued evenly.

This can cause deformation of the raceway that could lead to vibration, loss of accuracy and premature bearing failure. Ideally the amount of stick-out or recess depth in the housing after assembling the spindle should be measured using a depth micrometer, this enables the correct amount of squeeze to be set on the retaining cover. In the example at the top of the next column, six retaining bolts have been evenly tightened. On the second graph the gap was too big and this can also cause deformation of the raceway.

Nominal bearing bore Clearance between Nominal bearing bore Clearance between
(mm) retaining cover and (mm) retaining cover and
housing (mm) housing (mm)
20 140 150 160
25 150 160 170
30 160 170 180
35 170 180 190
40 180 190 200
45 190 200 210
50 200 210 220
55 210 220 230
60 220 230 240
65 230 240 250
70 240 250 260
75 250 260 270
80 260 270 280
85 270 280 290
90 280 290 300
95 290 300 310
100 300 310 320
105 310 320 330
110 320 330 340
115 330 340 350
120 340 350 360
125 350 360 370
130 360 370 380

The table shows the correct amount of gap to be left to allow the correct squeeze on the retaining cover.

Housing Concentricity
The concentricity of the rear bearing housing can be measured as shown on the right. This value should be less than 10μm, ideally target 5μm. Final runout checks should be conducted on the fully assembled spindle both radially and axially at the nose and radially at the rear. Target runout values should be no greater than 5μm. 1 to 2μm is typical for high-speed spindles.

Locknut Torque/Spindle Runout Checks
When assembling cylindrical roller bearings, the outer ring is first pressed into the housing. Lightly grease or oil the raceway before inserting the spindle with inner ring/roller assembly. Rotate the bearing assembly while inserting, this minimises any damage to the outer raceway and rollers.
Mounting Tapered Bore Roller Bearings

As stated on page 17, the mounted clearance of a cylindrical roller bearing is very important to the optimum performance of the spindle. When using tapered bore types, it is recommended to set to a slight preload at the front of the spindle and a slight clearance to the rear of the spindle. This procedure can be easily accomplished with the use of special GN gauges (see next section). However, an individual gauge is required for each bearing size, so it is not always practical or economical to have a gauge available. This section will explain how to set the required preload or clearance without the use of a gauge.

Step 1
Determine the amount of shrinkage of outer ring raceway diameter due to fitting in the housing. \(\Delta r_e \) (Shrinkage) can be calculated or measured.

Calculation Method

\[\Delta r_e = (D_h - D) \times h \]

(If \(\Delta r_e \) >= 0, \(\Delta r_e = 0 \))

- \(D_h \): Bore diameter of housing
- \(D \): Outer diameter of outer ring
- \(h \): Reduction factor
 - (NN30xx, N10 series: 0.62)
 - (NN39, NN49 series: 0.70)

Measured Method
Ensure that the outer ring and housing are the same stable temperature. Using a cylinder gauge measure the bore of the outer ring in four different places before inserting into the housing. Insert the outer ring into the housing and repeat measurements. Using average measurements calculate amount of shrinkage (if any) and record.

Step 2
Determine the initial Radial clearance \(\Delta r_m \).
Remove the oil on the taper surface of the shaft and bore of the inner ring. Mount the inner ring assembly and place the outer ring over the rollers. Apply a dial gauge to the outer diameter of the outer ring (1).

Step 3
Lightly tighten the locknut; this will drive the bearing up the 1:12 taper and expand the bore to reduce the radial internal clearance (RIC) of the bearing. Measure the free radial play by moving the outer ring in a downward and upward motion. Continue to tighten the locknut (i.e., moving the bearing up the taper) until the radial clearance measured is approximately 0.005mm. (2)

Remarks:
(1) If the measurement takes too long, the temperature of the outer ring may rise to body temperature resulting in an erroneous measurement. Wearing gloves is recommended to reduce heat transfer.
(2) If there is an excessive amount of play, the outer ring may have deformed into an ellipse when pressed by hand. This would result in an erroneous measurement. Therefore, 0.005mm of play is acceptable (0.005mm is the target value, but 0.001mm to 0.002mm is also acceptable).
Mounting Tapered Bore Roller Bearings
- Calculation Method

Step 4
When Δr_m is set to approximately 0.005mm, record this value and measure the distance from the shaft shoulder to the inner ring end face (distance L) using slip gauges (block gauges).

Care should be taken when using the slip gauges since the inner ring can be tilted by the action of inserting the slips. Record the average distance from two to three measurements. (*3)

Step 5

Calculate the required length L_a for the spacer manufacturing according to the target clearance or preload required using the following formula:

$$L_a = L - (K (\Delta r_m - \Delta r + \Delta r_e))$$

La : Finish dimension of spacer for setting post mounting radial clearance
L : Width of block gauge (measured result from Step 4)
Δr_m : Movement of the outer ring in a radial direction (measured result from Step 3)
Δr : Target Radial clearance or Preload after mounting
Δr_e : Shrinkage of outer raceway diameter due to fitting in the housing
K : Coefficient (conversion value which includes shrinkage of a hollow shaft with a 1/12 tapered hole)
- (for solid shaft $K = 12$)
K_0 : Hollow shaft ratio = A/B x 100
A: Shaft bore diameter B: Shaft outer diameter

Hollow Shaft Ratio and Coefficient K

<table>
<thead>
<tr>
<th>Hollow shaft ratio K_0</th>
<th>Coefficient K</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-55%</td>
<td>14</td>
</tr>
<tr>
<td>55-65%</td>
<td>15</td>
</tr>
<tr>
<td>65-75%</td>
<td>16</td>
</tr>
</tbody>
</table>

Example of Calculation

$L = 20.55$
(distance between inner ring and shoulder)
$\Delta r_m = 0.007$ (measured RIC (Lift))
$\Delta r = -0.002$ (required RIC) i.e. preload
$\Delta r_e = 0.004$ (reduction in RIC due to housing)
$K = 15$ (hollow ratio of shaft is 60%)

$$L_a = 20.55 - (15 \times (0.007 - (-0.002) - 0.004))$$
(Be careful of sign notation - (-) = +)

$L_a = 20.475mm$

If a solid shaft was used the value of K is 12
i.e. 1:12 taper

In this case the L_a (spacer width) = 20.490mm

Remarks:
(*3) For the measurement of dimension L, the value obtained is produced by inserting the block gauge in the left half of the zone shown in Step 5. The right hand side shows that the gauge cannot be inserted (This is due to tilting that occurs between the shaft shoulder and inner ring end face.)

Example of Calculation

$L = 20.55$
(distance between inner ring and shoulder)
$\Delta r_m = 0.007$ (measured RIC (Lift))
$\Delta r = -0.002$ (required RIC) i.e. preload
$\Delta r_e = 0.004$ (reduction in RIC due to housing)
$K = 15$ (hollow ratio of shaft is 60%)

$$L_a = 20.55 - (15 \times (0.007 - (-0.002) - 0.004))$$
(Be careful of sign notation - (-) = +)

$L_a = 20.475mm$

If a solid shaft was used the value of K is 12
i.e. 1:12 taper

In this case the L_a (spacer width) = 20.490mm

Remarks:
(*3) For the measurement of dimension L, the value obtained is produced by inserting the block gauge in the left half of the zone shown in Step 5. The right hand side shows that the gauge cannot be inserted (This is due to tilting that occurs between the shaft shoulder and inner ring end face.)

Example of Calculation

$L = 20.55$
(distance between inner ring and shoulder)
$\Delta r_m = 0.007$ (measured RIC (Lift))
$\Delta r = -0.002$ (required RIC) i.e. preload
$\Delta r_e = 0.004$ (reduction in RIC due to housing)
$K = 15$ (hollow ratio of shaft is 60%)

$$L_a = 20.55 - (15 \times (0.007 - (-0.002) - 0.004))$$
(Be careful of sign notation - (-) = +)

$L_a = 20.475mm$

If a solid shaft was used the value of K is 12
i.e. 1:12 taper

In this case the L_a (spacer width) = 20.490mm

Remarks:
(*3) For the measurement of dimension L, the value obtained is produced by inserting the block gauge in the left half of the zone shown in Step 5. The right hand side shows that the gauge cannot be inserted (This is due to tilting that occurs between the shaft shoulder and inner ring end face.)

Example of Calculation

$L = 20.55$
(distance between inner ring and shoulder)
$\Delta r_m = 0.007$ (measured RIC (Lift))
$\Delta r = -0.002$ (required RIC) i.e. preload
$\Delta r_e = 0.004$ (reduction in RIC due to housing)
$K = 15$ (hollow ratio of shaft is 60%)

$$L_a = 20.55 - (15 \times (0.007 - (-0.002) - 0.004))$$
(Be careful of sign notation - (-) = +)

$L_a = 20.475mm$

If a solid shaft was used the value of K is 12
i.e. 1:12 taper

In this case the L_a (spacer width) = 20.490mm

Remarks:
(*3) For the measurement of dimension L, the value obtained is produced by inserting the block gauge in the left half of the zone shown in Step 5. The right hand side shows that the gauge cannot be inserted (This is due to tilting that occurs between the shaft shoulder and inner ring end face.)

Example of Calculation

$L = 20.55$
(distance between inner ring and shoulder)
$\Delta r_m = 0.007$ (measured RIC (Lift))
$\Delta r = -0.002$ (required RIC) i.e. preload
$\Delta r_e = 0.004$ (reduction in RIC due to housing)
$K = 15$ (hollow ratio of shaft is 60%)

$$L_a = 20.55 - (15 \times (0.007 - (-0.002) - 0.004))$$
(Be careful of sign notation - (-) = +)

$L_a = 20.475mm$

If a solid shaft was used the value of K is 12
i.e. 1:12 taper

In this case the L_a (spacer width) = 20.490mm

Remarks:
(*3) For the measurement of dimension L, the value obtained is produced by inserting the block gauge in the left half of the zone shown in Step 5. The right hand side shows that the gauge cannot be inserted (This is due to tilting that occurs between the shaft shoulder and inner ring end face.)
Mounting Tapered Bore Roller Bearings – Gauge Method

As stated on page 17, the mounted clearance of a cylindrical roller bearing is very important to the optimum performance of the spindle. When using tapered bore types, it is recommended to set to a slight preload at the front of the spindle and a slight clearance to the rear of the spindle.

This procedure can be easily accomplished with the use of special GN gauges.

A GN gauge is an instrument for matching the tapered section of a shaft to the tapered bore of a bearing when mounting a cylindrical roller bearing with a tapered bore onto a machine tool spindle. After mounting, the GN gauge is used for precise control of the bearing’s radial internal clearance. This instrument is especially effective when a cylindrical roller bearing is used with radial preload.

Method

Step 1
Insert outer ring into the housing. (This is usually between 2μm clearance and 2μm interference.)

Step 2
Measure outer ring bore using a cylinder gauge at about four different locations. Determine the average for the measurements and set the gauge to zero.

(Confirm that all components, outer ring in housing, inner ring and shaft, are the same temperature before setting to zero.)

Step 3
Adjust the inscribed diameter of the GN gauge.

The idea is to set the bore of the GN gauge to replicate the bore of the outer ring after insertion in the housing.

Loosen the bolt of the main body fixture on the GN gauge. Apply the cylinder gauge to the inscribed diameter surface of the GN gauge and adjust the setscrew to the setting of the dial on the cylinder gauge to zero (see diagram on the left).

(Use the GN gauge in an upright position to avoid inaccuracies due to its own weight.)

Step 4
Gauge correction factor is necessary. Using the pointer control on the GN gauge. Adjust the main pointer to the red line on the front glass of the dial gauge. Confirm that the short needle is around the 2 position on the secondary dial.

(Gauge correction corrects for elastic deformation of the rollers due to measuring pressure on the gauge. The amount of correction for each gauge is determined upon shipment of the gauge.)

Step 5
Mount the cleaned inner ring (not yet greased) onto the shaft and tighten the shaft locknut lightly.

Step 6
Expand the GN gauge by adjusting the setscrew by about 0.2 to 0.3mm. Place centrally over the inner ring rollers and release the setscrew to allow the GN gauge to spring closed over the rollers.
Mounting Tapered Bore Roller Bearings - Gauge Method

Step 7
Oscillate the GN gauge lightly in the peripheral direction as shown to allow the dial indicator to stabilise. Tighten the shaft locknut until the gauge reads zero.

Reading the Dial Gauge
If the dial needle is in the position clockwise to the zero it indicates that there is clearance present. If the dial needle is in the position anti-clockwise to the zero it indicates that there is preload present. The actual amount of clearance or preload is \(\frac{1}{2} \) the indicator reading.

Example 1
In example 1 the indicator reads 2 anti-clockwise. This indicates –1μm clearance or 1μm preload.

Example 2
In example 2 the indicator reads 4 clockwise which equals 2μm clearance.

Step 8
Widen the GN gauge using the adjusting screw and carefully lift off the assembly avoiding any impact with the rollers.

Step 9
Measure the clearance between the end face of the roller bearing inner ring and the shoulder of the shaft or dummy spacer. Using block or slip gauges measure the gap around the circumference in a number of positions (ideally 4) and record the average value. The final spacer should be manufactured to this length.

Step 10
Remove the locknut and bearing from the shaft. Fit the adjusted spacer and re-assembly the bearing and locknut.

Step 11
Re-check the value of the clearance/preload by placing the widened gauge over the rollers and adjust the screw to allow gauge to contract of the rollers. Using the guide in step 7 re-check to ensure that the target values of clearance/preload were achieved.

10. Useful Tip
In the case where a thrust bearing is used adjacent to the roller bearing, it is better to make an assembly spacer to incorporate the width of the thrust bearings for use while setting up. This will prevent damage pressing the thrust bearings on and off the spindle a number of times.
Classical Spindle Arrangements

A Typical Medium Speed Spindle

Spindle Type:
Type 1

Typical Application(s):
Turning machines and general machining centres

Free Side
- fixed preload
- outer rings allowed to float

Located Side
- fixed preload
- outer rings located

A Typical Workhead Spindle

Spindle Type:
Type 2

Typical Application(s):
Turning machines and general machining centres

Note:
All bearings are preloaded together i.e. one set. Both spacers need to be identical in length

A Typical High-Speed Spindle

Spindle Type:
Type 3

Typical Application(s):
High-speed grinding spindle

Note:
Work end bearing located, preload applied through springs at rear bearing
Confirm Bearing Shaft and Housing Fits

- See NSK bearing box label for exact bearing bore and OD dimensions to one micron.
- Measure the shaft OD and housing bore at the bearing locations.
- Calculate the bearing shaft and housing fits and compare with OEM specifications or NSK guidelines.
- Excessive bearing-shaft interference or insufficient bearing-housing clearance fit may lead to excessive bearing preload and seizure.
- Insufficient bearing-housing clearance at the rear-side may prevent the rear-side bearings and shaft from floating within housing bore during axial thermal expansion.
Cylindrical Roller Bearings (Tool-Sides and Rear-Sides)
- Double-row cylindrical bearings (NN3xxx) with tapered bores allow for precise setting of internal clearance (between rollers and outer ring bore).
- Check the bearing bore taper against shaft taper for a good match.
- Radial clearance depends on OEM, spindle design, speed, operating temperature, etc. (consult OEM specs or NSK guidelines). Usual to target a 2μm preload.
- Target outer ring to housing fit is 2μm loose to 2μm tight.
- Tool-Side: Excessive preload (negative radial clearance) can result in high bearing running temperature and seizure.
- Rear-Side: This bearing is usually mounted with greater radial clearance than tool-side to ensure the shaft floats within housing during axial thermal expansion. Usual to target a 5μm clearance.

Tool-Side Labyrinth Seal
- Most spindle designs should include a labyrinth seal to minimise contamination.
- Labyrinth designs that incorporate an air barrier should use clean, dry air.
- Avoid aiming coolant directly into spindle nose.

Locating Spacers
- This spacer is adjacent and forward of the double-row cylindrical roller bearings (NN3xxx).
- Spacer width determines the bearing’s position along the shaft taper and establishes the mounted radial internal clearance.
- Grind spacer to specific width after setting radial internal clearance and before final mounting of NN3xxx bearing.
Thrust Angular Contact Ball Bearings

- Thrust angular contact ball bearings can be types BAR (30°) or BTR (40°).
- These bearings are designed to take only thrust loads due to special OD tolerance.
- Angular contact bearings with standard OD tolerance may fail.
- The double-row cylindrical roller bearing will support the radial load.

Clamping Nut

- Sufficiently tighten clamping nut to prevent bearings from backing off.
- If bearings become loose, the bearing set may lose preload and rigidity, the spindle may not machine properly or it may make noise.
- Check shaft-bearing assembly straightness after tightening.
Medium to High-Speed Spindle

Outer Cap
- Most spindle designs include an outer cap whose male register surface should lightly compress the bearing’s outer ring.
- Suggested axial compression: 10-30μm.
- The male register’s surface should be flat and parallel to the outer cap mounting flange surface that contacts the housing. This will ensure even clamping pressure against the bearing outer ring.
- Excessive and/or uneven clamping pressure can result in bearing noise or loss of preload.

Clamping Nut Spacer
- This spacer in between the bearing inner ring and clamping nut (most spindle types).
- Spacer ensures even clamping around the bearing’s inner ring.
- Mating surfaces should be flat and parallel.

Bearing Spacers
- Spacers between bearings increase bending rigidity at the spindle tool-side.
- Spacers may lower bearing running temperature due to separation, depending on spindle design and operating conditions.
- When necessary, bearing mounted preload can be reduced or increased by offsetting spacers.
- Reducing preload may allow higher spindle speed or lower bearing operating temperature, especially for grease-lubricated bearings.
- Increasing preload can be used to increase spindle rigidity.
Rear-Side Angular Contact Ball Bearings

- Rear-side bearings and shaft must float within housing bore to allow axial thermal expansion. Therefore, a clearance fit should exist between the rear-side bearing OD and housing bore.
- Calculate clearance fit with housing bore measurement and bearing OD from box label.
- Compare calculated clearance fit with OEM specification or NSK guidelines.
- Spindle rear-side bearings usually have light preload or less.
- High-speed spindles may use a single-row cylindrical roller bearing instead of angular contact ball bearings, with a locating outer ring fit, the axial expansion is allowed by roller/outer bore movement.

Shaft Alignment

- Check shaft straightness at this location relative to tool-side after final assembly.
- Check spindle alignment with drive source.
- Avoid excessive belt tension for belt-driven spindles.
Post-Mounting

- Preload Checks 40-41
- Alignment and Balance 42
- Running In 43
- Troubleshooting 44-45
 - Cause of High Temperature 44
 - Cause of Noise 45
Preload Checking

The final preload after assembly is important, factors such as fits, spacer compression, locknut torque and correct seating can affect the preload. If the final preload is larger than required, the rigidity will be increased, which is a positive aspect, but the temperature will also be increased which could cause a seizure under certain conditions. If the preload is too low, temperature will be lower but there might not be adequate stiffness to support external loads.

Methods of Checking Preload

There are three methods for checking the preload in mounted angular contact bearings depending on the amount of preload and accuracy required.

1. Starting Torque Method

This is obtained by measuring the tangential force of the spindle by either using a spring balance or rotary torque devise as shown below:

Care should be taken with this method since oil film formation in the ball contact area can cause stick – slip, this can give a higher than actual value.

The preload is obtained from the relationship between measured starting torque and preload. An example is given in the graph below:

This method is best suited to applications where the preload is high. Most high-speed machine tool spindles use a lower preload and in this case the error can be large.

2. Force Deflection Method

For this method a thrust load is axially applied to the spindle and its axial displacement is directly measured as shown below.

The preload is obtained by the relationship between axial displacement and preload, see example graph below:

This method is better suited to lower preload applications. If the preload is very high it may be necessary to use special hydraulic equipment to apply a large enough axial load. For example if the axial rigidity is 200N/μm, an axial load of 2000N will be required to deflect the spindle by 10μm. If loads are excessive, elastically deformation can occur in both the bearing internals and associated machine parts; this could result in a measured preload being lower than actual value.
3. Natural Frequency Method

This is by far the most sensitive and repeatable method but the results can be affected by the spindle design and more sophisticated equipment is required to measure the natural frequency of the shaft assembly.

The shaft is vibrated in the axial direction by lightly tapping with a hammer and measuring the resonant frequency with an accelerometer coupled to a vibration analyser. (See diagram to left). The actual preload after mounting can be found by the relationship of resonant frequency (Fz) to axial spring stiffness of the shaft assembly (Ka) and the relationship between stiffness and preload.

Natural Frequency Formula

\[F_z = \frac{1}{2\pi} \sqrt{\frac{K_a}{m}} \times 1000 \]

\(K_a \) : Axial spring constant of bearing (N/μm)
\(F_z \) : Resonance frequency (Hz)
\(m \) : Mass of rotating body (kg)

In some cases a special hammer containing a transducer can be used to impact against the shaft assembly, this allows the impact force to be measured. In this situation the preload can be calculated directly from the formula without the need of graphs. \(F_z \) is found from the spectrum analyser, the shaft assembly is weighted (M) and \(K_a = \text{Force/movement} \) (movement measured by accelerometer in μm).

Summary of Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Starting torque method</th>
<th>Thrust static rigidity method</th>
<th>Natural frequency method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantage</td>
<td>Used for heavy preload. If starting torque is high, measurement error is small.</td>
<td>Used for light preload.</td>
<td>Measurement accuracy is high. Good repeatability.</td>
</tr>
<tr>
<td>Disadvantage</td>
<td>Not good for light preload. If starting torque is small, variation of measurement is large.</td>
<td>Not good for heavy preload. Loading equipment is too large scale. Affected easily by deformation of contact part other than bearing.</td>
<td>Influence of spindle fixing condition should not be ignored.</td>
</tr>
</tbody>
</table>

The resonant frequency method is not suitable for applications using bearings with clearances such as N or NN cylindrical roller bearings that are not preloaded.

Axial Rigidity

The axial rigidity can be checked by comparing the values of deflection obtained i.e. if 10μm deflection is the result of an axial load of 1000N, the axial rigidity is 1000 / 10 = 100N/μm. Values for axial rigidity for pairs of bearings are given in the NSK Global catalogue, these values are before mounting and are a guide only; the mounted values will be higher due to fits and clamping forces etc. the effects of fits and clamping forces on stiffness can be calculated by NSK on request.
Alignment and Balance

Balance
Any unbalance of rotating components will cause repeated stress or excessive vibrations due to centrifugal force. This is especially true for spindle rotating at high-speeds i.e. above 1 million \(\text{dmn} \).

\(\text{dmn} \) is a speed factor used within the bearing and lubrication industry and is simply the mean bearing diameter in mm multiplied by the rotational speed in rpm and is usually expressed in terms of millions or part millions. E.g. A 7014 bearing has a mean diameter of 90mm, if it was operating at 12000rpm, the \(\text{dmn} \) would be 90x12000 = 1.08Md mn, and classed as high-speed in need of balancing.

Units of unbalance are either expressed in g-mm (gram millimetres) or using the ISO or ANSI system a G number, which is a vibration velocity expressed in mm/sec (millimetres/second).

For example, G1.0 corresponds to a free spinning vibration of 1.0 mm/sec and is typical for high accuracy grinding machines.

G Grades
0.4 Gyroscopes, Ultra precision grinders.
1.0 High-Speed grinding machines, jet engines, small high-speed motor.
2.5 Medium to large electric motors, Machine tool drives.
6.3 General Machine tools, cylinders and rollers for printing machines.

The grades continue up to 4000.

Alignment
There are two basic types of misalignments: angular and offset. In reality most applications have a combination of both. If misalignments are not minimised, the resulting moment loads on the bearing can cause premature failure.

Vee Drives
Spindle assemblies using V-belts should have the misalignment between the spindle shaft centre and motor shaft centre less than 0.1mm.

Couplings
Care should be taken when using direct drive couplings. For high-speed, special couplings will be necessary.

Coupling joints should have the misalignment between the spindle shaft centre and motor shaft centre corrected to 0.01mm or less.

Remember that both offset and angular misalignment can occur with direct drive coupling:

Off Set Misalingment
Angular Misalingment

Misaligned shafts can result in:
- Vibration of the spindle
- Increased bearing load
- Damage to the bearings
- Poor surface finish of the work
- Increased energy consumption
- Premature bearing failure
‘Run-in’ Procedures

‘Running in’ is very important to the life of the bearings. During this final process of the mounting procedures it will help you determine if there are any problems with the spindle. The ‘run-in’ process is aimed at channelling excess grease out of the way of the rolling elements. An improper run-in will result in higher than normal temperatures in the bearing and can ultimately cause early failure of the bearings due to the breakdown of the grease.

There are two methods of the run-in processes; continuous run-in and intermittent run-in.

Continuous Running Procedure

Continuous running works by gradually increasing the operating speed from the low speed zone. Although somewhat time consuming, this procedure helps machine operators to detect potential problems related to the main shaft, thus avoiding costly damage to the bearings.

Procedure

1. Begin at a reasonably low operating speed.
3. Stabilise the temperature.
4. Continue incremental increases of operating speed until reaching maximum operating speeds.
 *This process can take up to 18 hours.

NOTE: It is very important that if the temperature of the bearings reaches 70°C, or 50°C at the housing, shut the machine down. These temperatures could cause early failure of the bearings.

Intermittent Running Procedure

Intermittent running is a good option if you are short of time. The process works by stopping operation and stabilising temperatures before there is a rapid temperature rise, (this being caused by a sudden movement of grease across the path of the balls during operation.

Procedure

1. First take the maximum operating speed and divide it into eight to ten stages to determine the maximum target speed for each stage.
2. Each stage is divided into 10 cycles that are approximately one minute long.
3. During each cycle, rapidly accelerate the spindle assembly to the target speed for the current stage, and then decelerate back to zero, and rest for a period i.e. 40 seconds.
4. Repeat this cycle about 10 times.
5. Continue moving up through the stages, following the above procedures, until you reach the target speed. i.e. if the maximum speed is 8000 min⁻¹ the first target maybe 1000 min⁻¹, cycle ten times, and then move to 2000 min⁻¹ and so on until 8000 min⁻¹.

11. Useful Tip

It can be useful to initially run the spindle at a low speed say 5% of the maximum speed for about 15 minutes to gently align the grease within the bearing and to ensure there are no mechanical problems or loose nuts.

After the ‘running in’ procedure has been completed it can also be useful to run for about 1 hour at the maximum operating speed.

Bearing ‘Run-in’ Procedures

POST-MOUNTING
After mounting has been completed, a test run should be conducted to determine if the bearing has been mounted correctly.

It is best to monitor the temperature directly with a thermocouple on the outer ring of the bearing, if this is not possible, then the temperature on the outside of the housing will give a general indication.

The bearing temperature should rise gradually to a steady level within one to two hours depending on the size of the equipment and the power consumption after start up. If the bearing experiences trouble or if there is some mounting problem, the bearing temperature may increase rapidly and become abnormally high.

The causes of high temperature can be a number of things ranging from excessive amount of lubricant causing high frictional heat due to churning, to insufficient lubricant that could cause starvation and high contact friction. In the latter case it could be some time before the high temperature occurs but in the case of too much lubricant, the high temperature usually appears at the start.

Other causes of high temperature could be insufficient bearing clearance, incorrect mounting or excessive friction at the seals. In the case of high-speed applications, the wrong bearing type, lubricant or lubrication method could lead to abnormally high and unstable temperatures.

Below is a table showing reasons for high temperature, vibrations, lubricant leakage and the countermeasures.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal temperature rise</td>
<td>Excessive amount of lubricant: Reduce amount of lubricant or select stiffer grease. Insufficient or improper lubricant: Replenish lubricant or select a better one. Abnormal load: Improve the fit, internal clearance, preload, or position of housing shoulder. Incorrect mounting: Improve the machining accuracy and alignment of the shaft and housing, accuracy of mounting, or mounting method. Creep on fitted surface, excessive seal friction: Correct the seals, replace the bearing, or correct the fitting or mounting.</td>
</tr>
<tr>
<td>Vibration (Radial runout of shaft)</td>
<td>Brinelling: Replace the bearing and use care when handling and mounting bearing. Flaking: Replace the bearing. Incorrect mounting: Correct the squareness between the shaft and housing shoulder or sides of spacer. Penetration of foreign particles: Replace or clean the bearing, improve the seals.</td>
</tr>
<tr>
<td>Leakage or discolouration of lubricant</td>
<td>Too much lubricant. Penetration by foreign matter or abrasion chips: Reduce the amount of lubricant, select a stiffer grease. Replace the bearing or lubricant. Clean the housing and adjacent parts.</td>
</tr>
</tbody>
</table>
Possible causes of noise include: incorrect lubrication, poor alignment of the shaft and housing, or external contamination entering the bearings. Below is a chart of possible causes and countermeasures:

<table>
<thead>
<tr>
<th>Irregularities</th>
<th>Possible cause</th>
<th>Countermeasures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal load</td>
<td>Loud metallic sound (1)</td>
<td>Improve the fit, internal clearance, preload position of housing shoulder, etc.</td>
</tr>
<tr>
<td>Incorrect mounting</td>
<td>Loud regular sound</td>
<td>Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting method.</td>
</tr>
<tr>
<td>Insufficient or improper lubricant</td>
<td>Separations</td>
<td>Replenish the lubricant or select another lubricant.</td>
</tr>
<tr>
<td>Contact of rotating parts</td>
<td>Dents generated by foreign matter, corrosion, flaps, or scratches on raceways</td>
<td>Replace or clean the bearing, improve the seals and use a cleaner lubricant.</td>
</tr>
<tr>
<td>Brinelling</td>
<td>Brinelling</td>
<td>Replace the bearing and use care when handling bearings.</td>
</tr>
<tr>
<td>Flaking on raceway</td>
<td>Excessive clearance</td>
<td>Replace the bearing.</td>
</tr>
<tr>
<td>Penetration of foreign particles</td>
<td>Excessive clearance</td>
<td>Replace the bearing.</td>
</tr>
<tr>
<td>Flaws or flaking on balls</td>
<td>Excessive clearance</td>
<td>Replace the bearing.</td>
</tr>
<tr>
<td>Abnormal load</td>
<td>Excessive amount of lubricant</td>
<td>Reduce amount of lubricant or select a stiffer grease.</td>
</tr>
<tr>
<td>Insufficient or improper lubricant</td>
<td>Excessive amount of lubricant</td>
<td>Replenish lubricant or select a better one.</td>
</tr>
<tr>
<td>Abnormal load</td>
<td>Insufficient or improper lubricant</td>
<td>Replenish lubricant or select a better one.</td>
</tr>
<tr>
<td>Incorrect mounting</td>
<td>Improve the fit, internal clearance, preload position of housing shoulder.</td>
<td></td>
</tr>
<tr>
<td>Creep on fitted surface, excessive seal friction</td>
<td>Improve the machining accuracy and alignment of the shaft and housing, accuracy of mounting or mounting method.</td>
<td></td>
</tr>
<tr>
<td>Vibration (radial runout of shaft)</td>
<td>Brinelling</td>
<td>Replace the bearing and use care when handling bearings.</td>
</tr>
<tr>
<td>Flaking</td>
<td>Flaking</td>
<td>Replace the bearing.</td>
</tr>
<tr>
<td>Incorrect mounting</td>
<td>Incorrect mounting</td>
<td>Correct the squareness between the shaft and housing shoulder or side of spacer.</td>
</tr>
<tr>
<td>Penetration of foreign particles</td>
<td>Penetration of foreign particles</td>
<td>Replace or clean the bearing, improve the seals.</td>
</tr>
<tr>
<td>Leakage or discoloration of lubricant</td>
<td>Too much lubricant. Penetration by foreign matter or abrasion chips</td>
<td>Reduce the amount of lubricant, select a stiffer grease. Replace the bearing or lubricant. Clean the housing and adjacent parts.</td>
</tr>
</tbody>
</table>

Note (1): Squeaking may arise from grease lubricated ball bearings or cylindrical roller bearings (medium to large size). This is especially true during winter when temperatures are low. In general, even though squeaking will occur, the bearing temperature will not rise, leaving fatigue or grease life unaffected. Consequently, such a bearing can continue to be used. If you have concerns regarding squeaking noise, please contact NSK.
The following section shows how a spindle performance can be upgraded by changing from a conventional design to a special product designed specifically for certain applications.

This section also shows where improvements can be made by using updated products such as sealed bearings instead of open bearings.

The following products are included here:

- **Robust Design**
 Designed for low temperature generation or higher speeds. Both angular contact and cylindrical roller bearings available.

- **Improved Material**
 Steel, ceramic and special NSK SHX or EP material choices are available for applications resulting in longer fatigue life under severe conditions.

- **Sealed Bearings**
 Opportunity to eliminate contamination before and during operation resulting in longer grease life. Available for angular contact spindle bearings and ball screw support bearings.

- **Hybrid Bearings**
 Bearings with ceramic balls, resulting in lower temperature, higher speed, higher accuracy, reduced wear, higher stiffness and longer life.

- **TYN Cages**
 Especially suitable for grease applications and used in angular contact bearings.

- **TB Cages**
 Used to increase speed performance in cylindrical roller bearings.

- **TAC Conversions**
 Converting from 60° double direction thrust bearings to the more easy to fit and lubricate BTR and BAR Series 40° and 30° contact angle enabling higher speeds.
Robust Design - Angular Control

The ‘Robust’ design is a high-speed / low temperature range of bearings allowing higher performance for the same envelope size.

Benefits:
- Low Heat Generation
- High Seizure Resistance
- Better Temperature Stability
- Stable in High-Speed Operations

Designations examples:

<table>
<thead>
<tr>
<th>Type</th>
<th>Material Details</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Steel rings / ceramic balls</td>
<td>70BNR10TSULP3</td>
</tr>
<tr>
<td>H</td>
<td>All steel</td>
<td>70BNR10HTSULP3</td>
</tr>
<tr>
<td>X</td>
<td>Special SHX material rings / ceramic balls</td>
<td>70BNR10XTSULP3</td>
</tr>
<tr>
<td>XE</td>
<td>Special design same material as above</td>
<td>70BNR10XETSULP3</td>
</tr>
</tbody>
</table>
Robust Design - Cylindrical Roller Bearings

The complete range of NSK cylindrical roller bearings are designed to achieve high-speed performance combined with high rigidity. At the top of this range is the ‘Robust’ series.

Benefits:

- Low Heat Generation
- Improved Seizure Resistance
- Stable in Ultra-High-Speed

Designations examples:

<table>
<thead>
<tr>
<th>Type</th>
<th>Designation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single row -</td>
<td>Standard series</td>
<td>N1014BM1KRCC0P4</td>
</tr>
<tr>
<td>Single row -</td>
<td>‘Robust’ series, RS type</td>
<td>N1014RSTPKRCC0P4</td>
</tr>
<tr>
<td>Double row -</td>
<td>High Rigidity series</td>
<td>NN3014TBKRE44CC0P4</td>
</tr>
<tr>
<td>Single row -</td>
<td>‘Robust’ series, RX type</td>
<td>N1014RXTPKRCC0P4</td>
</tr>
<tr>
<td>Single row -</td>
<td>‘Robust’ series, RXH type</td>
<td>N1014RXHTPKRCC0P4</td>
</tr>
</tbody>
</table>

Ultra High-Speed Single Row Cylindrical Roller Bearings

ROBUST Series RXH Type

- High performance with wear and seizure resistance during high-speed operation
 - Material of Inner/Outer Rings: Steel “SHX”
 - Ceramic Rollers
 - Outer Ring Guided PEEK Cage

ROBUST Series RX Type

- High performance with wear and seizure resistance during high-speed operation
 - Material of Inner/Outer Rings: Steel “SHX”
 - SHX Rollers
 - Outer Ring Guided PEEK Cage

ROBUST Series RS Type

- Designed to deliver cost-effective high-speed performance
 - Material of Inner/Outer Rings: Steel
 - Steel Rollers
 - Outer Ring Guided PEEK Cage

Standard Series

- Standard type bearings with brass cage
 - Material of Inner/Outer Rings: Steel
 - Rollers Guided Brass Cage

High Rigidity Series

- High performance with a newly developed polymer cage
 - Material of Inner/Outer Rings: Steel
 - Rollers Guided PEEK Cage or Roller Guided Brass Cage

(Selection based on application requirements)
SHX Steel
This is a special material designed by NSK for Ultra high-speed applications. It is a highly heat and wear resistant steel using special NSK heat treatment technology. At extreme speeds the wear resistance of the material is very important, this is particularly true for cylindrical roller bearings. Seizures can occur due to wear and high temperature.

The SHX material exhibits both wear and heat resistance similar or better than M50 (Aerospace steel used on main shaft bearings up to 300°C).

The SHX material is used for part of the 'Robust' range for both angular contact and cylindrical roller bearings. For the cylindrical roller bearing it offers speeds almost as good as ceramic roller bearings for a significantly lower price. This option is only available from NSK.

Z Steel
This is now the standard steel used for precision bearings. This steel is an improvement on the conventional carbon chrome bearing steel i.e. vacuum degassed steel (SAES2100, SUJ2). It is specially produced by reducing the amount of non-metallic inclusions, oxides and other inclusions such as Ti (Titanium) and S (Sulphur). Tests have proved that this significantly improves the bearing fatigue life.

When calculating fatigue life of NSK precision bearings in Machine Tool applications which are relatively clean and not highly loaded, the fatigue life of Z steel can be increased by approximately 14 times.

EP Steel (Extremely Pure)
The number and size of particles within the steel affects the fatigue life of the material particularly under high loads. A new inspection process developed by NSK enabled the development of this extremely pure (EP) steel for use in high load applications.

Compared to Z steel it can be seen that the fatigue life is superior. The graph also shows that the slope of the fatigue results for the EP steel is almost vertical, this is an indication of high reliability.

All the Ball Screw Support (TAC) bearings are made from this EP material.

SHX Steel
This is a special material designed by NSK for Ultra high-speed applications. It is a highly heat and wear resistant steel using special NSK heat treatment technology. At extreme speeds the wear resistance of the material is very important, this is particularly true for cylindrical roller bearings. Seizures can occur due to wear and high temperature.

The SHX material exhibits both wear and heat resistance similar or better than M50 (Aerospace steel used on main shaft bearings up to 300°C).

SHX steel results in a fatigue life increase of 4 times longer than conventional Vacuum degassed steel at 20% higher speed.

Three types of steel materials support long life and high performance of NSK Super-Precision bearings.

Bearing Material

Z Steel
This is now the standard steel used for precision bearings.

EP Steel (Extremely Pure)
The number and size of particles within the steel affects the fatigue life of the material particularly under high loads. A new inspection process developed by NSK enabled the development of this extremely pure (EP) steel for use in high load applications.

Compared to Z steel it can be seen that the fatigue life is superior. The graph also shows that the slope of the fatigue results for the EP steel is almost vertical, this is an indication of high reliability.

All the Ball Screw Support (TAC) bearings are made from this EP material.

When calculating fatigue life of NSK precision bearings in Machine Tool applications which are relatively clean and not highly loaded, the fatigue life of Z steel can be increased by approximately 14 times.

EP Steel results in a fatigue life increase of 3 times longer than conventional Vacuum degassed steel.

Graph showing fatigue life comparison between different steels.

SHX Steel
This is a special material designed by NSK for Ultra high-speed applications. It is a highly heat and wear resistant steel using special NSK heat treatment technology. At extreme speeds the wear resistance of the material is very important, this is particularly true for cylindrical roller bearings. Seizures can occur due to wear and high temperature.

The SHX material exhibits both wear and heat resistance similar or better than M50 (Aerospace steel used on main shaft bearings up to 300°C).

SHX steel results in a fatigue life increase of 4 times longer than conventional Vacuum degassed steel at 20% higher speed.
Sealed Bearings

Upgrading to sealed bearings is a major advantage to increasing life and performance of spindle bearings. Sealed angular contact bearings are the same external dimensions as open bearings so interchange is easy.

Benefits of Sealed Bearings

1. **Time saving to end user, no grease fill operation**
 - Bearings pre-greased by NSK
 - NSK greased bearings are filled with high performance grease.
 - This saves the user time by eliminating the greasing process and ensures that the correct quantity of grease is applied in the correct position under ultra clean conditions.

2. **Reduced down time**
 - Eliminate contamination through poor handling
 - Sealed bearings prevent contamination entering the bearing during handling and fitting to the spindle.
 - Grease in an unsealed bearing can attract dust and metallic debris. Contamination in the bearing will cause the raceways to wear and cause premature failure.

3. **Better spindle performance**
 - Prevents grease migration in vertical spindles
 - Spindles in vertical operations can vary in temperature due to grease falling out of the uppermost bearing into the path of the lower bearing.
 - Sealed bearings prevent this occurring and because the seals are non-contacting type, the speed capability is the same as open bearings.

4. **Higher accuracy due to reduced contamination**
 - Prevents entry of contaminants in operation
 - The sealed bearing eliminates solid contamination entering the bearing during operation. This prevents noise and vibration in the bearing. Vibration can result in loss of accuracy of machined components.

5. **Longer grease life**
 - Seals prevent loss of grease and reduce ageing
 - A sealed bearing not only prevents premature failures due to contamination, but also extends the grease life by preventing grease loss during operation. This results in at least a 50% increase in life.

Designations System

Sealed bearings are available in two series: standard precision and High-Speed ‘Robust’ Precision from 30mm to 100mm bore.

- **Standard Series**
 - Example of bearing number: 7010CTRV1VSULP3 MTSX

- **Ultra High-Speed Robust Series**
 - Example of bearing number: 60BNR10XTV1VSUELP3 MTSX

‘V1V’ signifies a sealed bearing.

Summary of Benefits

1. **Grease in optimum quantity and position**
 - Time saving for end user
2. **Clean handling**
 - Eliminates downtime
3. **No grease migration in application**
 - Improved performance
4. **Reduced external contamination in application**
 - Higher accuracy
5. **Longer grease life**
 - 1.5 times the life of an open greased bearing
Sealed Ball Screw Support Bearings

Ball screw support bearings are now available with seals for extra reliability in dusty and water/oil contaminated environments.

The seals are contacting type, which means that the sealing properties are excellent and each seal is a different colour to help identify the front and rear face of the bearing. A vee line is also marked on the outer ring surface for additional indication (point of vee showing front face).

The grease for the sealed bearings is a special WPH waterproof type; this provides an additional barrier against water contamination.

Although these seals are contacting for additional protection, the low friction design prevents high temperature generation.

The above graph shows the effectiveness of the low friction contact seals in the ability to prevent water ingress. However the use of the seals also prevents dust and other contamination from entering the bearing during the fitting process and prevents the loss of grease from the bearings particularly in vertical ball screw applications. Reducing the grease leakage improves the life of the bearing considerably.

This new product is standardised for Single Universal (SU) arrangements and is available from 15mm to 45mm bore size.

Designation Example:
30TAC62BDDGSUC10PN7B (DDG = seal symbol)

Summary of Benefits

- Longer life
- Reduced grease loss
- Low temperature compared to conventional sealing arrangements
- Prevent water and dust ingress
- Better handing
Hybrid Bearings

Many machine repairers are upgrading to hybrid - (steel ringed bearings using silicon nitride ceramic balls) in order to improve reliability, particularly in situations where warranties are extending from 1 to 2 and sometimes up to 3 years.

Features of Hybrid Bearings

Lighter Weight –
Due to mass being approximately 40% of steel, hybrid bearings can run up to 25% faster than conventional all steel bearings. This also means that the generated temperature is also lower.

Smoother Surface –
The surface finish of the ceramic ball is much smoother than the steel ball, this improves the accuracy of rotation and the part being manufactured.

Harder and Stiffer –
The ceramic ball is much harder than a conventional steel ball (HV 1700@ <800°C compared to HV 700@20°C). This means that the ceramic ball is less likely to be damaged by small amounts of hard contamination. Higher stiffness means that the hybrid bearing will distort less under high load compared to the steel ball type.

Corrosion and Electrical Resistance –
These bearings can be run in more arduous environments. The electrical resistance prevents pitting of the ball surface due to electrical discharge in built-in motor spindles.

Benefits of Hybrid Bearings

The above features result in the following:

• Higher Speed
• Cooler Temperature
• Higher Reliability
• Longer Life
• Higher Accuracy

Designation System
Standard Precision Product:

7014CNS24TRSULP3

Bearing: 7006C
Speed: 34000 min⁻¹
318N - Constant Type (spring)

70BNR10HTSULP3

Grease Lubricated

Temperature Rise (°C)

Conventional Bearing
Hybrid Bearing

7006C Bearing
Preload: 318N
The majority of angular contact bearings use phenolic type cages and these are exceptional good for a wide range of conditions and particularly for high-speed since they are outer ring located. However, there are advantages to using TYN cages in certain applications, particularly in grease lubrication. TYN is a polyamide material and this cage is designed to be ball guided.

Reduced Cage Noise
In certain applications cage noise can occur in grease lubricated bearings. This is due to friction between the ball surface and the cage guide surface; this can be particularly noticed in cold conditions. The TYN cage design eliminates this due to the very low friction quality of the material and good vibration absorption characteristics as well as improvements in the cage shape.

The test data below shows the comparison of the Phenolic and Polyamide cage:

Low Noise

<table>
<thead>
<tr>
<th>Cage</th>
<th>Grease</th>
<th>Temperature</th>
<th>Noise (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYN</td>
<td></td>
<td>-10°C</td>
<td>A</td>
</tr>
<tr>
<td>Phenolic</td>
<td></td>
<td>Room (20°C)</td>
<td>A</td>
</tr>
</tbody>
</table>

A: No cage noise, B: cage noise often observed, C: cage noise was observed.

TYN cage runs silence compared to phenolic cage.

Longer Grease Life
Grease life is longer because there is more internal space for the grease to collect in and because the grease can clear the rotating parts more quickly, the running in time is reduced.

Higher Strength
The TYN material has both higher bending and tensile strength.

<table>
<thead>
<tr>
<th>Cage Type</th>
<th>Bending Strength</th>
<th>Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/TR</td>
<td>150</td>
<td>90</td>
</tr>
<tr>
<td>TYN</td>
<td>237</td>
<td>172</td>
</tr>
</tbody>
</table>

Strength measured on test piece, not complete cage.

TYN cages can be used up to a speed of 1.4md mn. (Mean bearing diameter in mm X speed in rpm.) This covers most grease lubricated applications. Above 1.4Mdmn phenolic cage should be selected.

Examples of Designation:

- Standard Precision: 7014CTYN=DULP3
- High-Speed Precision: 70BNR10TYN=DULP3
Traditionally, medium to large lathes require very good radial and axial rigidity. For this reason it is normal to use a configuration of roller bearings and thrust bearings at the front of the spindle for radial and axial rigidity respectively. The conventional type thrust bearing was a double row, bi-directional 60° contact angle TAC series bearing. This is still available for bore sizes of 140mm and above. However for lathe spindles below this size the requirements are now for higher speed and/or lower temperature performance. For this reason a new type of thrust bearing has been designed to fit this requirement.

New ‘Robust’ Design BAR and BTR Thrust Bearings

This new range has the same size and number of balls as the TAC series but have special internal geometry and lower contact angles (30° or 40°) enabling low heat generation, higher speed performance and good axial rigidity.

Higher Speed Performance

The new thrust bearing design can run to higher speeds, BAR (30°) being the fastest followed by BTR (40°) which has a higher rigidity compared to BAR but still runs faster than the original TAC (60°). The new thrust bearings can also be supplied in hybrid types (ceramic balls) enabling even higher speeds and rigidities.

Interchangeability

The width of the pair of new thrust bearings is special to allow easy interchange between the old TAC type bearing. The outer diameter tolerance is the same as the TAC bearings to enable a clearance fit in the housing, this ensures radial load is only taken by the adjacent roller bearing.

Advantages

- Reduced components – eliminates outer spacer B
- Easy mounting since single row bearing structure
- Easy to upgrade from old to new design – only inner ring spacer needs to change (C to D), bore and OD same as old design

Example of designation:

Original 60° type: 100TAC20DPN7+LC6
New 30° type: 100BAR10STYNDBLP4A (S = steel, H = Hybrid)
New 40° type: 100BTR10STYNDBLP4A (S = steel, H = Hybrid)

Low Heat Generation

- ROBUST design enables low heat generation and high-speed operation.
- Longer grease life thanks to reduced grease deterioration and TYN resin cage.
- Better machining accuracy.
TB Cages

An exciting new material has been patented by NSK for use in roller bearings. This new material is an engineered polymer called ‘PPS’ Polyphenylene sulphide and is designated TB type.

Advantages over Brass MB type cage
- Reduced wear
- Higher speed
- Lower temperature
- Longer life

Wear Resistance

- Grease discoloration due to wear on brass cage
- Reduced wear using TB cage

Longer Life

Experiments also showed that the TB cage could be run under higher preloaded conditions and closer to boundary lubrication compared with brass cages. In endurance tests under severe conditions wear could be found in the Brass cage bearings after 200 hours compared to 300 hours for the PPS material of the TB cage.

Example of Designation:
NN3022TBKRE44CC0P4

Size and Range

<table>
<thead>
<tr>
<th>Bearing Type</th>
<th>Cage Symbol</th>
<th>Specification</th>
<th>Available Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>MB</td>
<td>Roller guided machined brass cage</td>
<td>NN3920 to NN3956</td>
</tr>
<tr>
<td></td>
<td>TB</td>
<td>Roller guided PPS resin cage</td>
<td>NN3006 to NN3024</td>
</tr>
</tbody>
</table>
Supplementary Information

- Bearing Interchange Guide 58
- Bearing Failure Countermeasures 59-62
- Sound and Vibration Diagnosis 63-64
- Appendix of Preload Tables 65-67
- Bore and OD Matching Chart 68-69
Supplementary Information

Interchange Guide for Precision Angular Contact Bearings

Symbols in brackets show seal designation when available.

Items in red are the manufacturer's identifiers of particular parameters.

Example of 25 degrees contact angle

<table>
<thead>
<tr>
<th>Standard Design</th>
<th>ISO Series</th>
<th>NSK</th>
<th>SKF</th>
<th>SNFA</th>
<th>Fafnir</th>
<th>FAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>79xxA5(V1V)</td>
<td>71xxA5V1V</td>
<td>SEBxxxxx3</td>
<td>3xx93xx00W)</td>
<td>B71xx00E(PRSD)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>70xxA5(V1V)</td>
<td>70xxA5V1V</td>
<td>SEBxxxxx3</td>
<td>3xx90xx00W)</td>
<td>B70xx00E(PRSD)</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>72xxA5</td>
<td>72xxA5</td>
<td>E2xxxx03x</td>
<td>3xx21xx00W)</td>
<td>B72xx00E(PRSD)</td>
<td></td>
</tr>
</tbody>
</table>

High-Speed Design

<table>
<thead>
<tr>
<th>ISO Series</th>
<th>NSK</th>
<th>SKF</th>
<th>SNFA</th>
<th>Fafnir</th>
<th>FAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>xxBER19(V1V)</td>
<td>71xxA5V1V</td>
<td>VE3xxxxx3</td>
<td>3xx93xx00W)</td>
<td>HS03719xxE</td>
</tr>
<tr>
<td>10</td>
<td>xxBER10(V1V)</td>
<td>70xxA5V1V</td>
<td>VE3xxxxx3</td>
<td>3xx90xx00W)</td>
<td>HS03700xxE</td>
</tr>
<tr>
<td>19</td>
<td>xxBER19(V1V)</td>
<td>71xxA5V1V</td>
<td>VE3xxxxx3</td>
<td>3xx93xx00W)</td>
<td>HC03719xxE</td>
</tr>
<tr>
<td>10</td>
<td>xxBER10(V1V)</td>
<td>70xxA5V1V</td>
<td>VE3xxxxx3</td>
<td>3xx90xx00W)</td>
<td>HC03700xxE</td>
</tr>
</tbody>
</table>

Steel balls

Steel balls sealed

Ceramic balls

Ceramic balls sealed

Special material rings

Interchange Guide for Precision Thrust Bearings

<table>
<thead>
<tr>
<th>Series</th>
<th>NSK</th>
<th>SKF</th>
<th>SNFA</th>
<th>Fafnir</th>
<th>FAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 degrees</td>
<td>xxBAR</td>
<td>BTMxx A/DB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40 degrees</td>
<td>xxBTR</td>
<td>BTMxx S/DB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60 degrees</td>
<td>xxTAC</td>
<td>2344xx</td>
<td>-</td>
<td>-</td>
<td>2344xx</td>
</tr>
</tbody>
</table>

Interchange Guide for Precision Ball Screw Support Bearings

<table>
<thead>
<tr>
<th>Series</th>
<th>NSK</th>
<th>SKF</th>
<th>SNFA</th>
<th>Fafnir</th>
<th>FAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-ISO Metric</td>
<td>30TAC62B</td>
<td>BISO62C</td>
<td>BISO62</td>
<td>MM30BS62</td>
<td>BISO30BS62</td>
</tr>
<tr>
<td>ISO Metric</td>
<td>30TAC62</td>
<td>BISO62C</td>
<td>BISO62</td>
<td>MM30BS62</td>
<td>BISO30BS62</td>
</tr>
<tr>
<td>BDX1</td>
<td>BSDA80200C</td>
<td>BSD80</td>
<td>BSD80</td>
<td>MM30BS62</td>
<td>BISO30BS62</td>
</tr>
</tbody>
</table>

Interchange Guide for Precision Cylindrical Roller Bearings

<table>
<thead>
<tr>
<th>Standard Design Construction</th>
<th>NSK</th>
<th>SKF</th>
<th>FAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN39xx(KR)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NN30xx(KR)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NN49xx(KR)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High-Speed Design Construction</th>
<th>NSK</th>
<th>SKF</th>
<th>FAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>N10xxRS(KR)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Steel rollers and Rings

Ceramic rollers and special steel rings

Special steel rollers and rings

(*) Normal steel rings used only

This interchange should be used as a guideline only, as manufacturers’ designations may change without notice.
This next section will explain the most common forms of bearing failure in a machine tool application with possible causes and countermeasures.

This section includes a diagnostic chart to help the end user to quickly focus on the most important reasons for the failure.

The types of problems reported by end users fall into the following categories:

Reason For Return/Bearing Problem

- Noise/Vibration: 60%
- Failure/Collapse: 15%
- Excessive Heat: 10%
- Out of Balance: 4%
- Radial Preload/Incorrect Fits: 17%
- Contamination: 63%
- Abnormal Load: 4%
- Fitting Error: 4%
- Lubrication: 8%
- Axial Clearance/Preload Problem: 10%

Inspection of the dismantled bearings often reveals that the most common cause of bearing failure is contamination of either hard particles or liquid. This often causes noise and vibration and can be detected by the methods outlined at the end of this section.
Maintenance, Inspection and Correcting Irregularities

In order to maintain the original performance of a bearing for as long as possible, proper maintenance and inspection should be performed. If correct procedures are used, many bearing problems can be avoided and the reliability, productivity, and operating costs of the equipment containing the bearings are all improved. It is suggested that periodic maintenance be done following the procedure specified. This periodic maintenance encompasses the supervision of operating conditions, the supply or replacement of lubricants, and regular periodic inspection.

Items that should be regularly checked during operation include bearing noise, vibration, temperature, and lubrication. If an irregularity is found during operation, the cause should be determined and the proper corrective actions should be taken after referring to the table. If necessary, the bearing should be dismounted and examined in detail.

Bearing Failure and Countermeasures

In general, if rolling bearings are used correctly they will survive to their predicted fatigue life. However, they often fail prematurely due to avoidable mistakes. In contrast to fatigue life, this premature failure is caused by improper mounting, handling or lubrication, entry of foreign matter, or abnormal heat generation. For instance, the causes of rib scoring, as one example, are the use of improper lubricant, faulty lubricant system, entry of foreign matter, bearing mounting error, excessive deflection of the shaft or any combination of these. Thus, it is difficult to determine the real cause of some premature failures. If all the conditions at the time of failure and previous to the time of failure are known, including the application, the operating conditions, and environment; then by studying the nature of the failure and its probable causes, the probability of similar future failures can be reduced. The most frequent types of bearing failure, along with their causes and corrective actions, are listed in the table.

Causes and Countermeasures for Bearing Failures

<table>
<thead>
<tr>
<th>Type of Failure</th>
<th>Irregularities</th>
<th>Photo</th>
<th>Probable causes</th>
<th>Countermeasures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaking</td>
<td>Flaking on one side of the raceway of radial bearing.</td>
<td></td>
<td>Abnormal axial load (sliding failure of free-side bearing).</td>
<td>When mounting the outer ring of free-side bearings, it should be fitted loosely, to allow axial expansion of the shaft.</td>
</tr>
<tr>
<td></td>
<td>Flaking pattern inclined relative to the raceway in radial ball bearings. Flaking near the edge of the raceway and rolling surface in roller bearing.</td>
<td></td>
<td>Improper mounting, bending of shaft, inadequate centering, inadequate tolerances for shaft and housing.</td>
<td>Use care in mounting and centering, select a bearing with a large clearance, and correct the squareness of shaft and housing shoulder.</td>
</tr>
<tr>
<td></td>
<td>Flaking of raceway with same spacing as rolling element.</td>
<td></td>
<td>Large shock load during mounting, rusting while bearing is out of operation for prolonged period, mounting flaws of cylindrical roller bearings.</td>
<td>Use care in mounting and apply a rust preventative when machine operation is suspended for a long time.</td>
</tr>
<tr>
<td>Premature flaking of raceway and rolling element.</td>
<td></td>
<td>Insufficient clearance, excessive load, improper lubrication, rust, etc.</td>
<td>Select proper fit, bearing clearance, and lubricant.</td>
<td></td>
</tr>
<tr>
<td>Premature flaking of combined bearings.</td>
<td></td>
<td>Excessive preload.</td>
<td>Adjust the preload.</td>
<td></td>
</tr>
<tr>
<td>Scoring</td>
<td>Scoring or smearing between raceway and rolling surface.</td>
<td></td>
<td>Inadequate initial lubrication, excessively hard grease, high acceleration when starting operation.</td>
<td>Use a softer grease and avoid rapid acceleration.</td>
</tr>
<tr>
<td>Type of Failure</td>
<td>Irregularities</td>
<td>Photo</td>
<td>Probable causes</td>
<td>Countermeasures</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Scoring</td>
<td>Scoring or smearing between the end face of the rollers and guide rib.</td>
<td></td>
<td>Inadequate lubrication, incorrect mounting and large axial load.</td>
<td>Select proper lubricant and modify the mounting.</td>
</tr>
<tr>
<td></td>
<td>Crack in outer or inner ring.</td>
<td></td>
<td>Excessive shock load, excessive interference in fitting, poor shaft cylindricity, improper sleeve taper, large fillet radius, development of thermal cracks and increased flaking.</td>
<td>Examine the loading conditions, modify the fit of bearing and sleeve, improve accuracy in machining shaft and sleeve, correct fillet radius (the fillet radius must be smaller than the bearing chamber).</td>
</tr>
<tr>
<td></td>
<td>Crack in rolling element or broken rib.</td>
<td></td>
<td>Increased flaking, shock applied to rib during mounting or dropped during handling.</td>
<td>Use care in mounting and handling a bearing.</td>
</tr>
<tr>
<td></td>
<td>Fracture of cage.</td>
<td></td>
<td>Abnormal loading on the cage due to incorrect mounting, improper lubrication.</td>
<td>Correct mounting and examine the lubrication method and lubricant.</td>
</tr>
<tr>
<td>Indentations</td>
<td>Indentation on raceway with the same spacing as rolling element (brinelling).</td>
<td></td>
<td>Shock load during mounting or excessive load when not rotating.</td>
<td>Use care in handling the bearing.</td>
</tr>
<tr>
<td></td>
<td>Indentations on raceway and rolling elements.</td>
<td></td>
<td>Entry of foreign matter such as metallic particles and grit.</td>
<td>Clean the housing, improve the seals and use clean lubricant.</td>
</tr>
<tr>
<td>Abnormal Wear</td>
<td>False brinelling (phenomenon similar to brinelling).</td>
<td></td>
<td>Vibration of the bearing without rotation when out of operation, such as during transport or rocking motion of vibration.</td>
<td>Secure the shaft and housing, use oil as a lubricant and reduce vibration by applying preload.</td>
</tr>
<tr>
<td></td>
<td>Fretting, localized wear with reddish-brown wear dust at fitting surface.</td>
<td></td>
<td>Sliding wear at a minute gap in the fitting surface.</td>
<td>Increase interference and apply oil.</td>
</tr>
<tr>
<td></td>
<td>Wearing on raceway, rolling elements, rib and cage.</td>
<td></td>
<td>Entry of foreign matter, incorrect lubrication and rust.</td>
<td>Improve sealing capabilities, clean the housing and use a clean lubricant.</td>
</tr>
<tr>
<td></td>
<td>Creep, scoring wear at fitting surface.</td>
<td></td>
<td>Insufficient interference, insufficiently secured sleeve.</td>
<td>Modify the fitting and tighten the sleeve properly.</td>
</tr>
<tr>
<td>Seizure</td>
<td>Discoloration and melting of raceway, rolling elements and ribs.</td>
<td></td>
<td>Insufficient clearance, incorrect lubrication, or improper mounting.</td>
<td>Examine the fitting and internal clearance of a bearing, supply an adequate amount of proper lubricant and examine the mounting method and quality of related parts.</td>
</tr>
<tr>
<td>Corrosion and Rust</td>
<td>Corrosion and rust at bearing interior or fitting surface.</td>
<td></td>
<td>Condensation of water from the air or fretting, entry of corrosive substance (especially varnish gas).</td>
<td>Store carefully when in a moist or hot climate, take rust prevention measures before removing from operations for a long time, and select proper varnish and grease.</td>
</tr>
</tbody>
</table>
Bearing Failures and Countermeasures
- **Summary**

<table>
<thead>
<tr>
<th>Damage name</th>
<th>Location (phenomenon)</th>
<th>Typical cause</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Handling</td>
<td>Bearing surrounding</td>
</tr>
<tr>
<td>1. Flaking</td>
<td>Raceway, rolling surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2. Peeling</td>
<td>Raceway, rolling contact surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Bearings outer diameter surfaces</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>3. Scoring</td>
<td>Roller end surface, rib surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Cage guide surface, pocket surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>4. Smearing</td>
<td>Raceway, rolling surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5. Fracture</td>
<td>Raceway collar, rollers</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>6. Cracks</td>
<td>Raceway rings, rolling elements</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Rib surface, roller end face, cage guide surface (thermal crack)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>7. Cage damage</td>
<td>(Deformation), (fracture)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>(Wear)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8. Denting</td>
<td>Raceway, rolling surface, (innumerable small dents)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Raceway (debris on the rolling element pitch)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>9. Pitting</td>
<td>Raceway, rolling surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>10. Wear</td>
<td>Raceway, rolling surface, rib surface, roller end face</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>11. Fretting</td>
<td>Raceway, rolling surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>Bearing outside and bore, side surface (Contact with housing and shaft)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>12. False brinelling</td>
<td>Raceway, rolling surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>13. Creep</td>
<td>Raceway, rolling surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>14. Seizure</td>
<td>Fitting surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>15. Electrical corrosion</td>
<td>Raceway, rolling surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>16. Rust and corrosion</td>
<td>Raceway ring, rolling element, cage</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>17. Mounting fixtures</td>
<td>Raceway, rolling surface</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>18. Discoloration</td>
<td>Raceway ring, rolling element, cage</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Remark: This table is not comprehensive. It lists only the more commonly occurring damages, causes, and locations.
Sound and vibration accompany the rotation of rolling bearings. The tone and amplitude of such sound and vibration varies depending on the type of bearing, mounting conditions, operational conditions, etc. The sound and vibration of a rolling bearing can be classified under the followingfour chief categories listed in the table below and each category can be further classified into several sub-categories, as described in the table below.

Boundaries between groups are, however, not definite. Even if some types of sounds or vibrations are inherent in the bearings, the volume might be related to the manufacturing process, while some types of sounds or vibrations, even if they arise due to manufacturing, cannot be eliminated even in normal conditions. By recording sounds and vibrations of a rotating machine and analysing them, it is possible to infer the cause. As can be seen from figures on the next page, a mechanically normal bearing shows a stable waveform. However, a bearing with a scratch, for example, shows a waveform with wide swings indicating large-amplitude sounds at regular intervals. NSK produces a Bearing Monitor NB-4, a vibration measuring monitor that can diagnose irregularities in a rotating machine. The causes of the irregularities can be inferred using the NB-4 and recording equipment, such as a personal computer.

Classification of Sounds and Vibrations in a Rolling Bearing

<table>
<thead>
<tr>
<th>Sound</th>
<th>Vibration</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race noise</td>
<td>Free vibration of raceway ring</td>
<td>Continuous noise, basic unavoidable noise which all bearings generate</td>
</tr>
<tr>
<td>Click noise</td>
<td>Free vibration of raceway ring, free</td>
<td>Regular noise at a certain interval, large bearings and horizontal shaft,</td>
</tr>
<tr>
<td></td>
<td>vibration of cage</td>
<td>radial load and low rpm</td>
</tr>
<tr>
<td>Squash noise</td>
<td>Free vibration of raceway ring</td>
<td>Intermittent or continuous, mostly large cylindrical roller bearings,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radial load, grease lubrication, at particular speed</td>
</tr>
<tr>
<td>Cage noise</td>
<td>Free vibration of cage</td>
<td>Regular noise at a certain interval, all bearing types generate it</td>
</tr>
<tr>
<td>“CK” noise</td>
<td>Vibration of cage</td>
<td>Intermittent or continuous, lubrication with particular grease</td>
</tr>
<tr>
<td>“CG” noise</td>
<td>Vibration of cage</td>
<td>Intermittent or continuous, lubrication with particular grease</td>
</tr>
<tr>
<td>Tapping noise</td>
<td>Free vibration of cage</td>
<td>Certain interval, but a little irregular under radial load and during initial stage</td>
</tr>
<tr>
<td></td>
<td>Rolling element passage vibration</td>
<td>Continuous, all bearing types under radial load</td>
</tr>
<tr>
<td>Waviness noise</td>
<td>Vibration due to waviness</td>
<td>Inner ring Continuous noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outer ring Continuous noise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rolling element Continuous with rollers, occasional with balls</td>
</tr>
<tr>
<td>Flow noise</td>
<td>Vibration due to flow</td>
<td>Inner ring Regular noise at a certain interval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outer ring Regular noise at a certain interval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rolling element</td>
</tr>
<tr>
<td>Contamination noise</td>
<td>Vibration due to contamination</td>
<td>Irregular</td>
</tr>
<tr>
<td>Seal noise</td>
<td>Free vibration of a seal</td>
<td>Contact seal</td>
</tr>
<tr>
<td>Lubricant noise</td>
<td>—</td>
<td>Irregular</td>
</tr>
<tr>
<td></td>
<td>Runout</td>
<td>ω_i Continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f_{rc} Continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ω_{rc} Continuous</td>
</tr>
</tbody>
</table>

n: Positive integer (1, 2, 3...)
Z: Number of rolling elements
f_{rn}: Ring natural frequency in radial bending mode, Hz
f_{c}: Natural frequency in the mode of angular vibration in inertia of outer ring-spring system, Hz
ω_i: Rotation frequency of inner ring, Hz
SUPPLEMENTARY INFORMATION

Trouble Shooting

<table>
<thead>
<tr>
<th>Generated frequency (frequency analysis)</th>
<th>FFT of original wave</th>
<th>FFT after envelope (Basic No.)</th>
<th>Source</th>
<th>Countermeasures</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{ax} / f_{ax}</td>
<td>f_{ax} / f_{ax}</td>
<td>Selective resonance of waviness (rolling friction)</td>
<td>Improve rigidity around the bearings, appropriate radial clearance, high-viscosity lubricant, high-quality bearings</td>
<td></td>
</tr>
<tr>
<td>f_{ax} / f_{bc}</td>
<td>f_{ax} / f_{bc}</td>
<td>Natural frequency of cage</td>
<td>Collision of rolling elements with inner ring or cage</td>
<td>Reduce radial clearance, apply preload, high-viscosity oil, high-quality bearings</td>
</tr>
<tr>
<td>f_{ax} / f_{ax}</td>
<td>f_{ax} / f_{ax}</td>
<td>Natural frequency of cage</td>
<td>Collision of cage with rolling elements or rings</td>
<td>Apply preload, high-viscosity lubricant, reduce mounting error</td>
</tr>
<tr>
<td>f_{ax} / f_{ax}</td>
<td>f_{ax} / f_{ax}</td>
<td>Natural frequency of cage</td>
<td>Self-induced vibration caused by friction at cage guide surface</td>
<td>Change of grease brand, replace with countermeasured cage</td>
</tr>
<tr>
<td>f_{ax} / f_{ax}</td>
<td>f_{ax} / f_{ax}</td>
<td>Natural frequency of cage</td>
<td>Collision of cage and rolling element caused by grease resistance</td>
<td>Reduce radial clearance, apply preload, low-viscosity lubricant</td>
</tr>
<tr>
<td>n_{2} f_{bc}</td>
<td>n_{2} f_{bc}</td>
<td>Inner ring raceway waviness, irregularity of shaft exterior</td>
<td>High-quality bearings, improve shaft accuracy</td>
<td></td>
</tr>
<tr>
<td>n_{2} f_{ax}</td>
<td>n_{2} f_{ax}</td>
<td>Outer ring raceway waviness, irregular bore of housing</td>
<td>High-quality bearings, improve housing bore accuracy</td>
<td></td>
</tr>
<tr>
<td>2n_{2} f_{bc}</td>
<td>2n_{2} f_{bc}</td>
<td>Rolling element waviness</td>
<td>High-quality bearings</td>
<td></td>
</tr>
<tr>
<td>f_{ax} / f_{bc}</td>
<td>f_{ax} / f_{bc}</td>
<td>Nick, dents, rust, flaking on inner ring raceway</td>
<td>Replacement and careful bearing handling</td>
<td></td>
</tr>
<tr>
<td>f_{ax} / f_{bc}</td>
<td>f_{ax} / f_{bc}</td>
<td>Nick, dents, rust, flaking on inner ring raceway</td>
<td>Replacement and careful bearing handling</td>
<td></td>
</tr>
<tr>
<td>f_{ax} / f_{bc}</td>
<td>f_{ax} / f_{bc}</td>
<td>Nick, dents, rust, flaking on rolling elements</td>
<td>Replacement and careful bearing handling</td>
<td></td>
</tr>
<tr>
<td>f_{ax} / f_{ax}</td>
<td>f_{ax} / f_{ax}</td>
<td>Irregularity of dirt and debris</td>
<td>Washing, improve sealing</td>
<td></td>
</tr>
<tr>
<td>Natural frequency of seal</td>
<td>f_{c}</td>
<td>Self-induced vibration due to friction at seal contact area</td>
<td>Change the seal, change the grease</td>
<td></td>
</tr>
<tr>
<td>Natural frequency of seal</td>
<td>f_{c}</td>
<td>Irregular</td>
<td>Lubricant or lubricant bubbles crushed between rolling elements and races</td>
<td>Change the grease</td>
</tr>
<tr>
<td>f_{r}</td>
<td>f_{r}</td>
<td>Irregular</td>
<td>Irregular inner ring cross-section</td>
<td>High-quality bearings</td>
</tr>
<tr>
<td>f_{r}</td>
<td>f_{r}</td>
<td>Ball variation in bearing, rolling elements</td>
<td>Ball variation in bearing, rolling elements</td>
<td>High-quality bearings</td>
</tr>
<tr>
<td>2f_{r} – 2f_{c}</td>
<td>2f_{r} – 2f_{c}</td>
<td>Non-linear vibration due to rigid variation by ball variation</td>
<td>Non-linear vibration due to rigid variation by ball variation</td>
<td>High-quality bearings</td>
</tr>
</tbody>
</table>

- \(f_{bc} \): Orbital revolution frequency of rolling elements, Hz
- \(f_{ax} \): Ring natural frequency in axial bending mode, Hz
- \(f_{ax} \): Natural frequency in the mode of axial vibration in mass of outer ring-spring system, Hz
- \(f_{r} \): \(f_{r} = f_{c} \), Hz
- \(f_{c} \): Rotation frequency of rolling element around its centre, Hz

Vibration Measuring Equipment, Bearing Monitor NB-4
SUPPLEMENTARY INFORMATION

Bearing Preload Conversion Tables
- Standard Angular Contact

Preload Conversion Tables
In cases of emergency it is possible to change the preload of a set of bearings, providing a spacer is used between the opposing preloading bearings. The tables below show the amount of spacer length adjustment required to change from one preload to another.

For example, if the preload of a 7914 15° contact bearing needed to be changed from extra light to light, the inner ring spacer length would need to be reduced by 6μm. From medium to heavy would be 13μm reduction of inner ring spacer length. If it was required to change from light to heavy, it would be necessary to accumulate the values i.e. 12 and 13 to equal 25μm inner ring spacer length reduction.

Rule
i.e. when reducing the preload, select the same values from the table below but reduce the length of the outer spacer.

Standard Series
Series 79

<table>
<thead>
<tr>
<th>Bearing number</th>
<th>Extra light to light</th>
<th>Light to medium</th>
<th>Medium to heavy</th>
<th>Extra light to light</th>
<th>Light to medium</th>
<th>Medium to heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>7903</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7904</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>7905</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>7906</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7907</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7908</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>7909</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7910</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>7911</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7912</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>7913</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7914</td>
<td>6</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>7915</td>
<td>6</td>
<td>11</td>
<td>14</td>
<td>4</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>7916</td>
<td>5</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>7917</td>
<td>7</td>
<td>12</td>
<td>16</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>7918</td>
<td>6</td>
<td>14</td>
<td>16</td>
<td>4</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>7919</td>
<td>6</td>
<td>15</td>
<td>16</td>
<td>5</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>7920</td>
<td>8</td>
<td>14</td>
<td>19</td>
<td>5</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>7921</td>
<td>8</td>
<td>14</td>
<td>18</td>
<td>5</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>7922</td>
<td>8</td>
<td>14</td>
<td>18</td>
<td>5</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>7923</td>
<td>9</td>
<td>18</td>
<td>21</td>
<td>6</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>7924</td>
<td>9</td>
<td>18</td>
<td>23</td>
<td>6</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>7925</td>
<td>10</td>
<td>18</td>
<td>23</td>
<td>7</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>7926</td>
<td>9</td>
<td>18</td>
<td>23</td>
<td>6</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>7927</td>
<td>11</td>
<td>20</td>
<td>25</td>
<td>7</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>7928</td>
<td>11</td>
<td>20</td>
<td>25</td>
<td>7</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>7929</td>
<td>11</td>
<td>20</td>
<td>25</td>
<td>7</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>7930</td>
<td>13</td>
<td>23</td>
<td>30</td>
<td>9</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>7931</td>
<td>13</td>
<td>24</td>
<td>30</td>
<td>9</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>7932</td>
<td>15</td>
<td>27</td>
<td>34</td>
<td>10</td>
<td>19</td>
<td>25</td>
</tr>
</tbody>
</table>

NSK | 65
SUPPLEMENTARY INFORMATION

Standard Series

Series 70

<table>
<thead>
<tr>
<th>Bearing number</th>
<th>15º contact angle preload</th>
<th>20º Contact angle preload</th>
<th>30º contact angle preload</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extra light to light µm</td>
<td>Light to medium µm</td>
<td>Medium to heavy µm</td>
</tr>
<tr>
<td>7000</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>7001</td>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>7002</td>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>7003</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>7004</td>
<td>4</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>7005</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>7006</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>7007</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>7008</td>
<td>6</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>7009</td>
<td>5</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>7010</td>
<td>6</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>7011</td>
<td>7</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>7012</td>
<td>7</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>7013</td>
<td>7</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>7014</td>
<td>7</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>7015</td>
<td>7</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>7016</td>
<td>8</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>7017</td>
<td>8</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>7018</td>
<td>10</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>7019</td>
<td>10</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>7020</td>
<td>9</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>7021</td>
<td>10</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>7022</td>
<td>12</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>7023</td>
<td>12</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>7024</td>
<td>13</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>7025</td>
<td>13</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>7026</td>
<td>13</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>7027</td>
<td>15</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>7028</td>
<td>15</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>7029</td>
<td>15</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>7030</td>
<td>15</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>7031</td>
<td>16</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>7032</td>
<td>17</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>7033</td>
<td>17</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>7034</td>
<td>19</td>
<td>37</td>
<td>49</td>
</tr>
<tr>
<td>7035</td>
<td>19</td>
<td>37</td>
<td>49</td>
</tr>
<tr>
<td>7036</td>
<td>21</td>
<td>41</td>
<td>53</td>
</tr>
<tr>
<td>7037</td>
<td>23</td>
<td>41</td>
<td>53</td>
</tr>
</tbody>
</table>

Series 72

<table>
<thead>
<tr>
<th>Bearing number</th>
<th>15º contact angle preload</th>
<th>20º Contact angle preload</th>
<th>30º contact angle preload</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extra light to light µm</td>
<td>Light to medium µm</td>
<td>Medium to heavy µm</td>
</tr>
<tr>
<td>7200</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>7201</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>7202</td>
<td>4</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>7203</td>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>7204</td>
<td>5</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>7205</td>
<td>5</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>7206</td>
<td>7</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>7207</td>
<td>7</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>7208</td>
<td>8</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>7209</td>
<td>9</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>7210</td>
<td>8</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>7211</td>
<td>9</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>7212</td>
<td>11</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>7213</td>
<td>11</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>7214</td>
<td>11</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>7215</td>
<td>11</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>7216</td>
<td>12</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>7217</td>
<td>13</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>7218</td>
<td>14</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td>7219</td>
<td>15</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>7220</td>
<td>16</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>7221</td>
<td>17</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>7222</td>
<td>19</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>7223</td>
<td>19</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>7224</td>
<td>19</td>
<td>34</td>
<td>43</td>
</tr>
<tr>
<td>7225</td>
<td>21</td>
<td>37</td>
<td>45</td>
</tr>
<tr>
<td>7226</td>
<td>23</td>
<td>41</td>
<td>53</td>
</tr>
</tbody>
</table>

Bearing Preload Conversion Tables

- **Standard Angular Contact**
Bearing Preload Conversion Tables - Robust Series

BNR19S

<table>
<thead>
<tr>
<th>Bore size</th>
<th>Extra light to light</th>
<th>Light to medium</th>
<th>Extra light to light</th>
<th>Light to medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>70</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>80</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>90</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>110</td>
<td>12</td>
<td>14</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>120</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>130</td>
<td>20</td>
<td>15</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>140</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>150</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

BER19S

<table>
<thead>
<tr>
<th>Bore size</th>
<th>Extra light to light</th>
<th>Light to medium</th>
<th>Extra light to light</th>
<th>Light to medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>70</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>80</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>90</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>110</td>
<td>12</td>
<td>14</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>120</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>130</td>
<td>20</td>
<td>15</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>140</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>150</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

SUPPLEMENTARY INFORMATION

- Robust Series

BNR19H,XXE

<table>
<thead>
<tr>
<th>Bore size</th>
<th>Extra light to light</th>
<th>Light to medium</th>
<th>Extra light to light</th>
<th>Light to medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>35</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>45</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>65</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>75</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>85</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>95</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>105</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>110</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>115</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>120</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>130</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>140</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>150</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>13</td>
</tr>
</tbody>
</table>

BER19H,XXE

<table>
<thead>
<tr>
<th>Bore size</th>
<th>Extra light to light</th>
<th>Light to medium</th>
<th>Extra light to light</th>
<th>Light to medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>35</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>45</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>65</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>75</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>85</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>95</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>105</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>110</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>115</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>120</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>130</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>140</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>150</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>13</td>
</tr>
</tbody>
</table>

BNR19S

<table>
<thead>
<tr>
<th>Bore size</th>
<th>Extra light to light</th>
<th>Light to medium</th>
<th>Extra light to light</th>
<th>Light to medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>35</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>45</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>65</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>75</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>85</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>95</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>105</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>110</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>115</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>120</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>130</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>140</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>150</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>13</td>
</tr>
</tbody>
</table>
When selecting SU bearings or mixing sets of bearings to form a new or different arrangement, it is important to ensure that the bore and OD deviations are within a certain value. If the NSK sliding chart is not available, the tables below can be used to select the maximum difference between each deviation within the set.

Depending upon the bearing size and class of precision the maximum values for optimum load sharing with the set of bearings is shown for both the bore and independently for the OD of the bearings.

The bores of the bearings to be matched together into sets are selected independently to the outer ring diameters.

The bearings are graded with the deviation in microns from the nominal size.

Bore and OD Matching Chart

<table>
<thead>
<tr>
<th>Bore and OD Matching Chart</th>
<th>P2</th>
<th>P3/P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td>Bore</td>
<td>OD</td>
</tr>
<tr>
<td>7900</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7901</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7902</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7903</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7904</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7905</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7906</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7907</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7908</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7909</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7910</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7911</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7912</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7913</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7914</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7915</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7916</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7917</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7918</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7919</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7920</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7921</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7922</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7923</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7924</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7925</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7926</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7927</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7928</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7929</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7930</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7931</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7932</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7933</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7934</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7935</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7936</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7937</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7938</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7939</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7940</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7941</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7942</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7943</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7944</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7945</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7946</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7947</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7948</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

NSK | 68
For convenience ask NSK or your distributor to supply the handy sliding chart which will enable fast and accurate matching of all bearings within the NSK range. This is a double sided pocket sized plastic coated chart.

Ring size deviations are shown on both the bearing rings and box label as below.
Useful Tips

List of Tips in This Publication

<table>
<thead>
<tr>
<th>Tip number</th>
<th>Tip description</th>
<th>Section</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Setting bearing high points</td>
<td>Bearing Selection</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>P3 precision more cost effective</td>
<td>Bearing Selection</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Changing preload in spaced bearings</td>
<td>Bearing Selection</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>Greasing precision bearing using syringe</td>
<td>Pre-mounting</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Measurement of components - room temperature</td>
<td>Pre-mounting</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>Hot air gun for heating housings</td>
<td>Mounting</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Adjusting spindle assemblies for better runout accuracy</td>
<td>Mounting</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Cylindrical roller bearing-housing assembly</td>
<td>Mounting</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Simple guide for roller bearing preload calculation</td>
<td>Mounting</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Spacer method for tapered bore cylindrical roller bearing preload setting</td>
<td>Mounting</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>'Running in' safety checks</td>
<td>Post-mounting</td>
<td>43</td>
</tr>
</tbody>
</table>
Index

A
Axial Stiffness 11, 16, 41
Axial Clearance 15
Assembly Procedures 28
Alignment 42

B
Bearing Overview 6
Ball Screw Support Bearings 7
Bending Stiffness 11
Built-in Motors 11
Back to Back Arrangements 12
Bearing Combinations 15-16
Bearing Capacity 16
Bearing Rigidity 16
Bearing Matching Chart 18, 84-89
Bearing Tolerances 18
Balancing 42
Box Bar Code 18

C
Conventional Bearings 6
Cylindrical Roller Bearings 7
C mark on Bearing and Box 9
Contact Angle 11
Constant Preload 14
CA Values 15
C\alpha Values 16
C\nu Values 16
Contamination 20
Cleanliness 20
Component Checks 24
Calculation Method for Preload of Cylindrical Bearings 29-30
Couplings 42
Ceramic Balls 53
Cage Material 54

D
d and D Marks on Bearing and Box 9
d, n Factor 15
DU Arrangements 16
DUD Arrangements 16
Dismantling Area 20

E
End Cover Gap/Clearance 28
EP Steel 50

F
F and B Mark on the Bearing Box 9
Face to Face Arrangements 12
Fitting Area 20
Bearing Fitting 26
Failure, Causes of Failures, Countermeasures 59-62

G
Grease Lubrication 21
Grease Quantity 22-23
Gauge Method for Mounting Cylindrical Roller Bearings 31-32

H
High-Speed Bearings 6
High Point Marking 10
Handling Bearings 20
Housing Measurements 24
Induction Heater 26
Hybrid Bearings 53

I
Introduction 4
Identification Marks 9
Interchange Guide 58

L
Life Ratio - Cylindrical Bearings 17
Loosening Torque 27

M
Material Upgrades 50

N
Natural Frequency 41
Noise, Cause of 45

P
Product Range 8
Precision Grades 13
Preload 14-17
Position Preload 14
Preload Adjustment - AC Bearings 16
Preload Adjustment - Cylindrical Bearings 17
Packaging 21
Press Fit 26
Preload Checking 40-41
Preload Conversion 46-57

Q
QU Arrangements 18

R
Robust Bearings 6, 48-49
Radial Stiffness 11, 16
Runouts 13
Radial Internal Clearance (RIC) 17
Retaining Cover Tightening 28
Running In Process 43

S
Serial Number 9
Single Micron Grading 13
Spring Preload 14
Speed Factors 14
Spindle Arrangements 12
Sliding Chart 18
Spaces 24
Shaft Measurements 24
Spindle Checks 27
Spindle Examples 33-38
Start Up Checks 44
SHX Material 50
Sealed Bearings 51-52

T
Thrust Angular Contact Bearings 7
Tandem Arrangements 12
Tolerances 13, 18
Taper (Cylindrical Roller Bearing) 29
Temperature, Cause of 44
TB Cage 56
TYN Cage 54
TAC Thrust Bearing Conversion 55
Thrust Bearings 55
Trouble Shooting 63-64

U
Universal Bearing Sets 12
Upgrading 47
Useful Tips 70

V
Vee Lining - Single Bearing 9
Vee Lining - Sets of Bearings 10
Vee Diner 42

X
X Type Bearing 46-49

Z
Z Steel 50
EUROPEAN NSK SALES OFFICES

FRANCE
 NSK France S.A.S.
 Quartier de Thonque
 2, Rue Georges Guynemer
 78283 Guyancourt Cedex
 Tel: +33 1 302 73939
 Fax: +33 1 302 70001
 Email: info-fr@nsk.com

GERMANY
 NSK Deutschland GmbH
 Hartknochstrasse 15
 40880 Ratingen
 Tel: +49 2102 4619
 Fax: +49 211 4832 990
 Email: info-de@nsk.com

ITALY
 NSK Italia S.p.A.
 Via Gambalbis 215 - C.P. 103
 20024 Garbateto
 Milano (MI)
 Tel: +39 02 995 010
 Fax: +39 02 995 0270
 Email: info-it@nsk.com

NORWAY
 NORDIC SALES OFFICE
 NSK Europe Norwegian Branch ABF
 Øster Kalkroad 1
 4.1241 Sandefjord
 Tel: +47 33 29 15 60
 Fax: +47 33 29 05 62
 Email: info-no@nsk.com

POLAND & CEE
 NSK Polska Sp. z o.o.
 Warsaw Branch
 ul. Myśliwskiego 6/73
 02-796 Warsaw
 Tel: +48 22 645 1225
 Fax: +48 22 645 1229
 Email: info-pl@nsk.com

SPAIN
 NSK España, S.A.
 C/ Tarazona, 161 Campus Euro Paço
 2º Planta, 08014 Barcelona
 Tel: +34 93 209 36 81
 Fax: +34 93 433 57 76
 Email: info-es@nsk.com

SWEDEN
 NSK Sweden Office
 Karolinska Fastighetscenter
 Vårtorgsgatan 10
 SE-651 40 Karlstad
 Tel: +46 5410 35 40
 Fax: +46 5410 35 44
 Email: info-se@nsk.com

TURKEY
 NSK Rulmanlar Ota Dijis Tic. Ltd. Şti
 19 Mayıs Mah. Alaturk Cad.
 Üzyer Eşya no:24 Kat: 1
 TR-34214
 Kozuyasına - İstanbul
 Tel: +90 212 355 09 86
 Fax: +90 212 355 09 99
 Email: turkey@nsk.com

UK
 NSK UK Ltd.
 Northern Road, Newark
 Nottinghamshire
 NG24 2JF
 Tel: +44 1636 605123
 Fax: +44 1636 602775
 Email: info-uk@nsk.com

Please also visit our website:

© Copyright NSK 2008. The contents of this publication are the copyright of the publishers. Printed in England. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of NSK.